

Eocortex SDK and API

Published on 07/13/2023

Published on 10/24/2022

Table of Contents

General Information on Eocortex SDK .. 4

Quick start – typical tasks ... 5

Plugins .. 6

Registration of plugins in Eocortex .. 6

Action plugin.. 7

Video Analytics Plugin ... 10

Visualiser Plugin... 14

Menu Item plugin .. 16

Event Processor plugin .. 18

Frame receiver plugin .. 20

Eocortex API with HTTP and RTSP interfaces .. 30

HTTP interface for receiving data .. 30

Receiving system configuration .. 31

Receiving the list of grids available in the Eocortex Client.. 42

Receiving the list of screen profiles from (views) from the server ... 44

Receiving information about the current screen profile in the Eocortex client ... 45

Receiving the current time of Eocortex server ... 47

Receiving information about the availability of the archive for the specified moment of time 48

Receiving the list of intervals with information about the beginning and end of the archive recording 49

Receiving information about the status of channels .. 51

HTTP interface for receiving events .. 55

Receiving the list of all events registered in the system ... 56

Receiving real-time events .. 57

Receiving events of the Event log ... 60

Receiving a list of special archive events .. 64

Receiving the list of recognized license plates from the archive .. 66

HTTP interface for executing commands by Eocortex server ... 68

Setting archive recording on/off for a channel ... 68

Setting date and time on Eocortex server .. 69

Setting a screen profile on the client .. 69

Setting a grid on the client .. 70

Setting a channel to the grid cell .. 70

Removing a channel from the grid cell ... 71

Clearing the entire grid ... 72

Setting channel to the guard mode .. 72

Sending audio to the camera .. 73

Generating an event from an external system ... 74

HTTP interface for operating PTZ features .. 76

Getting information about PTZ capabilities of the device .. 77

Published on 10/24/2022

Getting device presets .. 79

Setting a preset ... 80

"Continuous" movement .. 81

"Continuous" change of focus... 81

"Continuous" zoom ... 81

Termination of “continuous” actions .. 82

Automatic focus .. 82

Centering ... 82

"Step-by-step" movement .. 83

"Step-by-step" zoom ... 83

Zooming the selected area (AreaZoom) ... 83

HTTP interface for receiving media data ... 85

Receiving a single frame ... 85

Receiving raw video .. 86

Receiving transcoded video in MJPEG format .. 89

Receiving an archive fragment as MP4 video file ... 92

RTSP interface for receiving video and sound ... 94

HTTP interface for managing automatic switching of views ... 97

Setting automatic switching profile .. 97

Receiving automatic switching profiles .. 98

Eocortex API with XML interface... 99

Receiving People Counting data .. 100

Broadcasting video to a site .. 102

Broadcasting via HTML5 .. 102

Broadcasting via Flash (obsolete) .. 104

Broadcasting via JavaScript (obsolete) .. 105

Published on 10/24/2022

General Information on Eocortex SDK

Eocortex SDK is a tool that allows you to develop software called plugins, which can extend

functionality of existing Eocortex software system.

This tool is designed for .NET programmers who want to create plugins for Eocortex.

All source files of the tool and examples are coded for .NET in the C# language. Microsoft

Visual Studio is assumed as a development environment. For understanding the document

working knowledge of Eocortex terminology at the experienced user level is required. If

necessary, you can refer to the operator and administrator instructions provided along with

the Eocortex.

Since version 4.0, Eocortex uses Net6.

All plugins developed for versions 3.6 and earlier must be reworked to be

compatible with the new platform version.

Within the Eocortex SDK framework, each plugin software is a descendant of one of the

available base classes (interfaces) from the tools, and solves a specific range of tasks. At the

moment the main base classes (interfaces) in the tools, which can be used by external

software designers, are as follows:

All the above specified base classes (interfaces) types, as well as some other supporting

entities, are the subjects of related chapters of the document. All the plugins exist and operate

within the Eocortex channel. Thus, all plugin instances are isolated from each other by

default, but, if necessary, relevant data can be shared within plugin static fields. As a rule,

plugins that solve the same complex task are in one .NET assembly. Such assembly is a

dynamic link library (DLL) which operates within Eocortex. Assemblies connection and plugin

registration is carried out at the stage of startup of software system separate components

(see Plugin registration in Eocortex).

Имя

плагина

Название Описание

ExternalActio
n

Action Base class that allows adding new actions for scripts and

task scheduler

VideoAnalyst Video
analytics
plugin

Base class used for video analytics on the server

PluginVisuali
ser

Visualizer
plugin

Visualizer base class used for graphic display of specific

information on the Eocortex Client application channel

IClientPlugin
MenuItem

Menu item
plugin

Base class that allows to create proper sub-item in Setup

menu of Eocortex Client

EventProcesso
r

Event
processor
plugin

Event processor base class that allows to register and

generate its own events, get events from Eocortex, and

execute commands in the channel. Plugins of this type

are used to perform integration with other systems.

ICameraServic
eProvider

Frame
receiver
plugin

IP devices’ frame receiving interface that allows to get

video, audio and motion detection data and control PTZ

cameras.

https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-6

Published on 10/24/2022

Quick start – typical tasks

1. IP camera integration

To connect an IP device (a camera), just implement the Frame Receiver plugin. All

the necessary information about this type of plugin can be found in the Frame Receiver

Plugin section. The plugin framework is in the folder with examples, in the

Camera.csproj project.

2. Integration with Access Control Systems, Security and Fire Alarm, POS

terminals, etc.

The integration can be performed through the Event Processor plugin, which is able

to receive events from Eocortex, generate its own events in Eocortex in the process

of interaction with other systems, execute commands in Eocortex (recording on / off,

setting presets, I/O from the cameras etc.) in the channel, getting access to Eocortex

archive. For information about this plugin type, see Event processor Plugin section.

The plugin example can be found in the examples folder in the EventProcessor.cproj

project. If Eocortex is required only to receive video and audio, there is an easier

option, discussed in the section HTTP interface for acquiring video; the example of

acquiring video over HTTP is in the examples folder in the HttpVideo.cproj project.

3. Video Analytics

Any video processing algorithm can be implemented using the Video Analytics

plugin. All the analyst results are represented as events that can be further interpreted

by Menu Item and Visualizer plugins. These plugins are discussed in sections Video

Analytics Plugin, Visualizer Plugin and Menu Item Plugin; the example of usage can be

found in the examples folder in the Analyst.csproj project.

Published on 10/24/2022

Plugins

The present chapter deals with the process of plugin registration. It also discusses in detail

each type of plugin. The most important code fragments are shown in the text.

Registration of plugins in Eocortex

As Eocortex software system separate components (Server/Client/Configurator,

hereinafter - host) start up, .NET assemblies are searched in the Plugins folder of the

starting application. The IPlugin interface must be implemented in each found assembly, as

follows:

Example of the given interface implementation:

public interface IPlugin
{
 /// <summary>
 /// Returns unique module identifier
 /// </summary>
 Guid Id { get; }

 /// <summary>
 /// Returns module name
 /// </summary>
 string Name { get; }

 /// <summary>
 /// Returns module manufacturer name
 /// </summary>
 string Manufacturer { get; }

 /// <summary>
 /// Module initialization.
 /// It is called by the host during module registration in the system.
 /// </summary>
 /// <param name="host">Host interface</param>

void Initialize(IPluginHost host);
 }

public class ModuleDef : IPlugin
{
 public Guid Id
 {
 get { return new Guid("17EE3457-8FC2-4C0F-B133-EF11D0C4F38C"); }
 }

 public string Name
 {
 get { return "Abandoned object detection"; }
 }

 public string Manufacturer
 {
 get { return "Eocortex"; }
 }

 public void Initialize(IPluginHost host)
 {
 host.RegisterAnalyst(typeof(AnalystExample));
 host.RegisterExternalEvent(typeof(ObjectLeftEvent));

Published on 10/24/2022

Once the specified interface has been detected by the host, the initialization member

(Initialize) is called. As an argument IPluginHost interface, providing host service methods,

is transferred to the initialization member:

Host service methods provide the following possibilities:

• Plugin actions logging with the IMcLogMgr interface, received by the GetLogManager()
relevant method.

• Registration of plugins in the system for solving various problems.

Action plugin

An action plugin allows to extend the list of functions in scripts and in the task scheduler. It

is necessary to make a class ExternalAction descendant to create this plugin type:

 }
}

public interface IPluginHost
{
 /// <summary>
 /// Gets log management interface
 /// </summary>
 /// <returns></returns>
 IMcLogMgr GetLogManager();

/// <summary>
/// Device registration.
/// </summary>

 void RegisterDevType(DevType_RegInfo regInfo);

 /// <summary>
 /// Frame receiver registration.
 /// </summary>
 void RegisterRTFR(RTFR_RegInfo regInfo);

 /// <summary>
 /// Registers external event
 /// </summary>
 void RegisterExternalEvent(Type eventType);

 /// <summary>
 /// Registers external action
 /// </summary>
 void RegisterExternalAction(Type actionType);

 /// <summary>
 /// Registers a menu item in the Eocortex client
 /// </summary>
 void RegisterMenuItem(Type menuItemType, List<Guid> requiredPluginIDs);

// ... Other registration functions not shown here
}

/// <summary>
/// Base action class.
/// </summary>
[Serializable]
public abstract class ExternalAction : IAction
{
 [NonSerialized]

Published on 10/24/2022

In the descendant class the following attributes must be created:

• ActionGUIName – name of action, used in graphic interface in the configurator.

• GuidAttribute – action identification.

 protected IActionHost actionHost;

 /// <summary>
 /// Initialization. It is called by host before starting work.
 /// </summary>
 /// <param name="host"></param>
 public virtual void Initialize(IActionHost host)
 {
 actionHost = host;
 }

 /// <summary>
 /// User action setting element. It is called by configurator.
 /// Must return UserControl type (WPF).
 /// </summary>
 public abstract object GetGUISettingsControl();

 /// <summary>
 /// Displays if the current action
 /// is configured properly
 /// </summary>
 public abstract bool IsConfigurated
 {
 get;
 }

 /// <summary>
 /// The feature shows if the action is related to
 /// the specific channel. In other words, whether the action affects
 /// the channel in any way.
 /// </summary>
 public virtual bool IsChannelIndependent
 {
 get
 {
 //the action is not related to channel in any way by default
 return true;
 }
 }

 /// <summary>
/// Starting action to be executed
/// </summary>
public abstract void Run(RawChannelEvent channelEvent);

/// <summary>
/// Command execution in the channel. It is completed by server, can be used in
/// the Run method (see above)
/// </summary>
[NonSerialized]
public ExecuteCommandDelegate ExecuteCommand;

}

Published on 10/24/2022

ActionNeedsEventArgument attribute can be determined as an option to define that the

event object must be transmitted from the server to call Run plugin method. It also means

that the action is executed only at an event, and cannot be executed in the scheduled tasks

when events do not occur in these tasks.

Also, the base class methods must be defined (redefined). Let’s consider in detail the

initialization member in which IActionHost interface is passed from the host. The interface

is as follows:

The interface allows to get the information on the channel to which the plugin instance is

attached. The information includes the channel name and identification. The identification

must be used at command execution in the channel (ref. ExecuteCommand delegate).

For more detailed information on available commands refer to Section Event Processor Plugin.

In addition, with the help of SaveObject and GetObject methods the given interface allows

to save and download any serializable object using its identifier when Eocortex configuration

is set. This technique allows to save and retrieve settings that are the same for all plugin

instance configurations.

GetGUISettingsControl method must return the UserControl type element, which contains

a graphic interface for the plugin instance configuration in the configurator. The whole graphic

interface must be executed with WPF (Windows Presentation Foundation). IsConfigurated

property shows if the action is configured correctly in the graphic interface. If anything is

wrong, the configuration cannot be applied unless the mistakes are corrected.

For Action registration in the system, it is required to call RegisterExternalAction host

interface method (see Рlugin registration in Eocortex) when downloading the assembly and plugin

in the IPlugin initialization class method.

/// <summary>
/// Interface providing the host capabilities
/// when initializing the action plugin.
/// </summary>
public interface IActionHost
{
 /// <summary>
 /// Getting information about the channel,
 /// in which the current action plugin
 /// runs.
 /// </summary>
 RawChannelInfo GetChannelInfo();

 /// <summary>
 /// Saves any serialized object in the
 /// Eocortex configuration. It is used in the configurator.
 /// </summary>
 /// <param name="id">Object identifier</param>
 /// <param name="obj">Object</param>
 void SaveObject(Guid id, object obj);

 /// <summary>
 /// Gets a previously serialized object from the configuration.
 /// It is used in the configurator.
 /// </summary>
 /// <param name="id"></param>
 /// <returns></returns>
 object GetObject(Guid id);
 }

Published on 10/24/2022

Video Analytics Plugin

This plugin type analyses video stream frame-by-frame, and allows to create service

detectors, such as abandoned objects detector, sabotage detector and others. To create this

plugin type, the VideoAnalyst base class descendant must be created:

/// <summary>
/// Video analytics class. It is used for frame and motion map processing.
/// </summary>
public abstract class VideoAnalyst : IDisposable
{

/// <summary>
/// Analyst initialization. It is called by host before starting processing.
/// </summary>
/// <param name="Id">A channel identifier</param>
/// <param name="archiveEventsReader">Archive access interface</param>
/// <param name="mdZones">Motion detection zones.</param>
/// <param name="settings">Analyst settings.</param>
public abstract void Initialize(Guid Id, IArchiveEventsReader
archiveEventsReader,
 List<MDZone> mdZones, PluginSettings settings);

/// <summary>
/// Frames and motion maps processing method. It is called by host.
/// </summary>
/// <param name="image">Frame</param>
/// <param name="motionMap">A motion map, can be null</param>
/// <param name="background">A motion detector background. Is equal to null, if
/// NeedBackground == false</param>
public abstract void Process(ImageData image, MotionMap motionMap,
 BackgroundImage background);

/// <summary>
/// Generates a previously registered external event in the channel.
/// It is completed by host. It is called by analyst.
/// </summary>
public GenerateEventDelegate GenerateEvent;

/// <summary>
/// If the analyst supports work with partially decoded frames.
/// True means that zoomed out video frames can be transmitted to the input,
/// False means that video frames in original resolution are always transmitted
/// to the input.
/// </summary>
public virtual bool SupportsPartlyDecodedFrames
{
 get
 {
 return false;
 }
}

public virtual bool NeedBackground
{
 get
 {
 return false;
 }
}

/// <summary>
/// Pixel format supported

Published on 10/24/2022

Descendant class must redefine all base class abstract methods and, if necessary, virtual

properties. Also, a subclass must contain PluginGUINameAttribute, which contains the

name of the analyst displayed in Eocortex Configurator graphical shell. In case the analyst

can be set up in the configurator, implementing SetSettings adjustment method and

specifying PluginHasSettingsAttribute is required.

Video data is transmitted to the analyst input as a class described below:

As each analytic plugin is attached by the user to a channel, PluginSettings object of

configuration in Eocortex configurator consists of 2 parts:

1) Settings related to the current security channel

2) General analyst settings, unrelated to the selected security channel.

/// </summary>
public virtual VAPixelFormat PixelFormat
{
 get
 {
 return VAPixelFormat.BGR24;
 }
}

/// <summary>
/// Executes a command.
/// </summary>
/// <param name="cmdObj"></param>
public abstract object ProcessCommand(object cmdObj);

/// <summary>
/// Replaces a motion detector for a preset one in the channel.
/// Ii is completed by host. Can be null.
/// </summary>
public ReplaceMotionDetectorDelegate ReplaceMotionDetector;

/// <summary>
/// Resource deallocation
/// </summary>
public abstract void Dispose();

/// <summary>
/// Changes general or specific analyst settings, if necessary.
/// A calling of method shall result in opening of user setting window.
/// It is called by host (configurator).
public abstract PluginSettings SetSettings(ISettingsHost settingsHost,
 PluginSettings settings);

}

public class ImageData
{
 public DateTime Timestamp;
 public byte[] Data;
 public System.Drawing.Size Size;
 public int Stride;
 public int BitPerPixel;
}

public struct PluginSettings
{

Published on 10/24/2022

If analyst settings are unified for all channels, it is sufficient to complete only a general setting

object. Otherwise, if all the analyst settings are related to a specific channel, it is sufficient to

complete only a specific channel setting object. The objects of general and specific settings are

user-defined. The only requirement for them is the possibility of their serialization, as all the

analyst settings are kept in Eocortex general configuration.

Let us consider ProcessCommand method which allows the analyst to execute commands

from the Menu Item plugin (see Menu Item plugin). This method receives a command as a

serialized object formed on the Menu Item plugin side. As a result, this method shall also

return the serialized object, which will be received subsequently and processed by the Menu

Item plugin. This mechanism allows to implement client-server interaction, as the

Videoanalyst plugin operates on the server, and the Menu Item plugin always operates in

the client.

While processing video frames, the videoanalyst shall transmit the results of its analysis to

the server by means of event generating. To do so, it is required to register in advance on

the host side (see Plugin registration in Eocortex) the outside user event containing a description

of all fields required for interpreting the operating results of the analyst. The event is registered

by IPluginHost interface using RegisterExternalEvent method during the module

initialization stage. The user event must inherit RawChannelEvent base class:

 /// <summary>
 /// Specific plugin settings related to the current channel. Can be null.
 /// A setting object must be serializable.
 /// </summary>
 public object channelSpecificSettings;

 /// <summary>
 /// General plugin settings. Are not related to the current channel. Can be null.
 /// A setting object must be serializable.
 /// </summary>
 public object generalSettings;
}

/// <summary>
/// Parent class in event hierarchy on channel.
/// </summary>
[Serializable]
public abstract class RawChannelEvent
{
 /// <summary>
 /// Event time stamp.
 /// </summary>
 public DateTime EventTime;

 /// <summary>
 /// An event comment.
 /// </summary>
 public string Comment;

 /// <summary>
 /// If event is local.
 /// Local events are not sent outside the current host.
 /// </summary>
 public bool IsLocal = false;

 /// <summary>
 /// If the event is to be saved in the database
 /// </summary>
 public bool Save = true;

Published on 10/24/2022

Each user event should have a number of mandatory attributes:

• GuidAttribute – explicitly defines a unique event

• Serializable - allows to complete event serialization

In addition, there are following optional attributes:

• EventNameGUI - names the event in the host graphic interface. Unless the attribute is

specified, the event is not displayed in scripts in the configurator;

• EventNameDatabase - a database table in which event instances are saved; the

attribute must be used if the event has fields that must be saved in the database (it is

important that SaveMode event property takes Special or Both values);

• EventGeneratesAlarmByDefault - a default event is an alarm, “Generate alarm” is

automatically attached to the event when new channel is created in Eocortex

configurator;

• EventGenerationFrequency - denotes event generation frequency, requires

EventGenerationFrequencyMode (ref. below). The attribute is recommended as it affects

server operation when events are saved in the database. Unless the attribute is not

defined, Middle mode is used by default. This mode is preferred. Low mode is not

advisable as events are recorded in the specific database, critical for functioning.

If the user event contains fields that must be saved in the database, the EventFieldSaveable

attribute should be denoted for each field. The attribute needs a field ordinal number - Order

(starting from 0) and IsIndexable flag, which denotes if the field index is required.

The following event field types with the following attributes int, bool, long, double,

DateTime, string, Guid, byte[] are supported.

 /// <summary>
 /// The event saving mode in the database.
 /// </summary>
 public abstract EventArchiveSaveMode SaveMode
 {
 get;
 }

 public RawChannelEvent()
 {
 EventTime = DateTime.UtcNow;
 }
}

/// <summary>
/// Event generation frequency.
/// </summary>
public enum EventGenerationFrequencyMode
{
 /// <summary>
 /// Events are generated at frequency,
 /// close to the frequency of frame analysis
 /// </summary>
 High = 0,
 /// <summary>
 /// Events are generated at frequency compared to
 /// half of frame analysis frequency
 /// </summary>
 Middle
}

Published on 10/24/2022

SaveMode property defines if the event is to be saved in the database. The event can be

saved in a base table, that contains only RawChannelEvent class fields, and in a specific

one with all event fields. It is possible to save all events in both tables. The base table allows

to record the occurrence of the event in the system. Afterwards the user can read the events

from the base table with Eocortex tools.

Thus, the user event can be implemented as follows:

For VideoAnalyst plugin registration, the host interface RegisterAnalyst method must be

called at the stage of assembly and plugin loading in IPlugin interface using class initialization

method (see Рlugin registration in Eocortex).

Visualiser Plugin

This plugin allows to display information from events that are received by Eocortex Client

channels in graphics (e.g., frames of moving objects, identified numbers, faces, etc.). For this

plugin type, the RTVisualiser class descendant is to be created:

[GuidAttribute("389EDCE2-54BB-4C2C-9984-51B7516A5DDF")]
[EventNameGUI("The object is left")]
[EventDatabaseName("objectleft")]
[EventGeneratesAlarmByDefault]
[EventGenerationFrequency(EventGenerationFrequencyMode.Low)]
[Serializable]
public class ObjectLeftEvent : RawChannelEvent
{

[EventFieldSaveable(0, true)]
[EventFieldNameGUI("Object")]
private string objectName;

public ObjectLeftEvent(string objectName)
{
 this.objectName = objectName;
}

public override EventArchiveSaveMode SaveMode
{
 get { return EventArchiveSaveMode.Both; }
}

}

/// <summary>
/// Visualiser class.
/// </summary>
public abstract class RTVisualiser
{

/// <summary>
/// Panel for primitive, text and another channel information drawing.
/// </summary>
protected IDrawingPanel drawingPanel;

/// <summary>
/// Graphical elements container. Allows to deposit separate
/// UserControl elements in the channel.
/// </summary>
protected Panel controlsContrainer;

protected IPluginToolSet pluginToolset;

/// <summary>
/// Visualiser initialization. It is called by host.
/// </summary>

Published on 10/24/2022

Each Visualiser plugin must define ProcessEvent method, which receives events from the

channel. All events are generated by Eocortex and other plugins. The plugin can visualize

events of any type, and they can be filtered using if operator and is key word, for example:

/// <param name="Id">A channel identifier</param>
/// <param name="pluginToolset"> Archive access interface used for sending
commands
/// for event subscription in the system.</param>
/// <param name="drawingPanel"> A drawing panel.</param>
/// <param name="controlsContrainer"></param>
public virtual void Initialize(Guid Id, IPluginToolSet pluginToolset,

IDrawingPanel drawingPanel, Panel controlsContrainer)
{
 this.pluginToolset = pluginToolset;
 this.drawingPanel = drawingPanel;
 this.controlsContrainer = controlsContrainer;
}

/// <summary>
/// Visualiser event processing. Specific drawing of event results.
/// </summary>
/// <param name="channelId">A channel identifier</param>
/// <param name="chEv">Event.</param>
/// <param name="isAlarm">If event is alarm</param>
public abstract void ProcessEvent(Guid channelId, RawChannelEvent chEv,

bool isAlarm);

/// <summary>
/// Delegate for sub-item registration in channel pop-up menu
/// in Eocortex client.
/// It is completed by host. It is called by visualiser.
/// </summary>
/// <param name="item"></param>
public RegisterChannelMenuItemHandler RegisterChannelMenuItem;

/// <summary>
/// Clearing all the visualizer drawings.
/// </summary>
public abstract void Clear();

/// <summary>
/// All resources deallocation. It is obligatory to call Release base class
/// in reloaded descendant methods.
/// </summary>
public virtual void Release()
{
 drawingPanel = null;
 controlsContrainer = null;
 pluginToolset = null;
 RegisterChannelMenuItem = null;
}

}

if (chEv is CounterEvent)
{
 ...
}

Published on 10/24/2022

Visualiser can register its subitem in the pop-up menu (right click on the channel in the

Eocortex Client). This allows to alter visualiser logic according to the user preference. It is

provided by RegisterChannelMenuItem delegate.

For Visualiser plugin registration, the host interface RegisterRTVisualiser method must be

called at the stage of assembly and plugin loading in IPlugin interface using class initialization

method (see Registration of plugins in Eocortex).

Menu Item plugin

The plugin of this type allows to create a proper graphic interface in Eocortex Client, and

the user can call it by clicking the corresponding Configuration menu item.

Typical plugin application is organization of client-server interaction with other plugins. For

example, the plugin can process results of analytical plugin operation on the server.

ClientMenuItem class descendant must be created to make a menu item plugin:

/// <summary>
/// Menu item class. It is used in client for adding
/// sub-items on the Configuration button menu.
/// </summary>
public abstract class ClientMenuItem : IDisposable
{
 private bool isEnabled = true;

 /// <summary>
 /// Plugin initialization.
 /// </summary>
 /// <param name="toolSet"></param>
 public abstract void Initialize(IPluginToolSet toolSet);

 /// <summary>
 /// Menu item name.
 /// </summary>
 public abstract string Name
 {
 get;
 }

 /// <summary>
 /// If the menu item is enabled.
 /// </summary>
 public bool IsEnabled
 {
 get
 {
 return isEnabled;
 }
 set
 {
 isEnabled = value;
 }
 }

 /// <summary>
 /// Processing method of click (keystroke) of the user
 /// </summary>
 public abstract void OnClicked();

 /// <summary>
 /// Resourses release method.

Published on 10/24/2022

The initialization method should be defined in the descendant class, which receives interface with

service functions from the host (Eocortex Client). The functions allow to receive channel

identifiers and their names in current configuration. In addition, they provide access to Eocortex

archive and possibility to send commands to analytical plugins and receive results of their

execution. It is possible to subscribe for all events occurring in the system. The interface is as

follows:

GetArchiveReader method provides access interface to archive and current channels

information in the configuration. Detailed data about this interface are kept in Eocortex SDK

source codes.

 /// </summary>
 public abstract void Dispose();
}

/// <summary>
/// A host provided interface for
/// archive access, sending commands,
/// system events subscription.
/// </summary>
public interface IPluginToolSet
{
 /// <summary>
 /// Receives archive access interface
 /// </summary>
 /// <returns></returns>
 IArchiveEventsReader GetArchiveReader();

 /// <summary>
 /// Sends a command to plugin
 /// running in the server.
 /// </summary>
 /// <param name="pluginId">Plugin identifier</param>
 /// <param name="channelsId">Channel identifiers</param>
 /// <param name="cmdObj">Command</param>
 /// <returns> Returns each channel result.

/// The key is channel identifier.
 /// Value is a result of the command execution.</returns>
 Dictionary<Guid, object> SendChannelsCommand(Guid pluginId,

List<Guid> channelsId, object cmdObj);

 /// <summary>
 /// Installs/deletes the channel event handler.
 /// </summary>
 /// <param name="subscrId"> A subscriber identifier </param>
 /// <param name="channelId"> A channel identifier </param>
 /// <param name="eventsHandler"> Handler. If it is null, then

/// previously installed handler is deleted.</param>
 void SetEventsHandler(Guid subscrId,

Guid channelId, EventsHandler eventsHandler);

 /// <summary>
 /// Receives plugin settings with a specified identifier for the channel.
 /// </summary>
 /// <param name="channelId">A channel identifier</param>
 /// <param name="pluginId">Plugin identifier</param>
 /// <returns></returns>
 PluginSettings GetPluginSettings(Guid channelId, Guid pluginId);
}

Published on 10/24/2022

SendChannelsCommand method sends commands to different plugin instances of the same

type according to the list of channels and receives results of command execution.

SetEventsHandler method sets up and deletes the channel event handler.

OnClicked method must implement the user logic through graphic interface. It is called by

client by clicking on the plugin-related menu item.

For Menu Item plugin registration, the host interface RegisterMenuItem should be called at the

stage of assembly and plugin loading in IPlugin interface of class initialization method (see Plugin

registration in Eocortex).

Event Processor plugin

The Event Processor plugin allows to receive and process signals from external systems.

While processing signals, the plugin can execute commands and generate events in its

channel. The event processor is created by means of inheritance from EventProcessor base

class:

/// <summary>
/// Plugin class for system event processing, command and proper event generating.
/// </summary>
public abstract class EventProcessor
{

/// <summary>
/// Initialization. Called by host.
/// </summary>
/// <param name="archiveReader">Archive access interface</param>
/// <param name="channelSpecificSettings">Plugin settings</param>
public abstract void Initialize(IArchiveEventsReader archiveReader,

PluginSettings settings);

/// <summary>
/// Generates a registered external event in the channel. Is completed
/// by host. Called by plugin.
/// </summary>
public GenerateEventDelegate GenerateEvent;

/// <summary>
/// Sends a set command to be executed in the channel. Is completed by host.
 /// Called by plugin.
/// </summary>
public ExecuteCommandExDelegate ExecuteCommand;

/// <summary>
/// Allows to subscribe for events on the channel. Completed by
 /// plugin if necessary at the initialization stage.
/// </summary>
public ReceiveEventDelegate OnChannelEventReceived;

/// <summary>
/// Changes general or specific settings, if necessary.
/// Method calling must result in user setting window opening.
/// It is called by host (configurator).
/// </summary>
/// <param name="settings"> Current plugin settings.</param>
/// <returns>New plugin settings.</returns>
public abstract PluginSettings SetSettings(PluginSettings settings);

}

Published on 10/24/2022

A subclass must contain an obligatory attribute PluginGUINameAttribute, which has the

analyst name displayed in Eocortex Configurator graphics. In case the analyst can be set

up in the configurator, SetSettings adjustment method must be implemented and

PluginHasSettingsAttribute identified.

Initialize method receives the interface for access to Eocortex archive from the host and plugin

setting object. As each plugin is attached to a channel, PluginSettings object of configuration

consists of 2 parts:

1) Settings related to the current security channel;

2) General analyst settings, unrelated to the selected security channel.

If the analyst settings are unified for all channels, it will be enough to complete only general

settings object. Otherwise, if all the plugin settings are related to a single channel, it will be

enough to complete only a specific channel settings object. General and specific objects are

user-defined. The only requirement is the object serialization, as all the plugin settings are

kept in Eocortex general configuration.

If the plugin must execute a specific command as a result of its operation (such as, turn

recording on/off, set up a preset on a camera, turn a camera, etc.), a command object should

be created. Currently there are following commands:

• RawEnableRecordingCommand - turns on a record in the channel, record interval is

defined optionally;

• RawDisableRecordingCommand - turns off a record in the channel;

• RawGoToPresetPtzCommand - sets up a preset on a camera;

• RawGoHomePtzCommand - sets up home camera position;

• RawStopPtzCommand - stops ptz (panorama/tilt/zoom) command execution on a

camera;

• RawMovePtzCommand - one step movement;

• RawZoomPtzCommand – relative approximation (zoom);

• RawStartMovePtzCommand - continuous (preferred flowing) motion;

• RawMoveToPtzCommand - turns a camera so that a reference point is in the center

of the frame area;

• RawSetOutputIOCommand - adjusts a signal level on the camera output;

• RawSetOutputPulsesIOCommand - generates the impulse sequence on the camera

output

The Event Processor plugin can subscribe for events occurring at the channel. To do so the

event processor has to complete OnChannelEventReceived delegate when initializing. In

addition, the plugin can generate its own events at the channel.

For the Event Processor plugin registration, the host interface RegisterEventProcessor

should be called at the stage of assembly and plugin loading in IPlugin interface of class

initialization method (see Plugin registration in Eocortex).

public struct PluginSettings
{
 /// <summary>
 /// Specific plugin settings related to the current channel. Can be null.
 /// A setting object must be serializable.
 /// </summary>
 public object channelSpecificSettings;

 /// <summary>
 /// General plugin settings. Not related to the current channel. Can be null.
 /// A setting object must be serializable.
 /// </summary>
 public object generalSettings;
}

Published on 10/24/2022

Frame receiver plugin

The plugin of this type allows to receive video and sound from IP devices and motion detection

data, to control PTZ cameras and IP devices’ inputs/outputs (IO). To perform the subtask of

receiving frames, the IRealTimeFrameReceiver interface must be implemented:

/// <summary>
/// Interface of receiving real time frames.
/// Used for creation of plugins that receive frames
/// from IP cameras.
/// </summary>
public interface IRealTimeFrameReceiver
{
 /// <summary>
 /// Event handler on receiving a new frame.
 /// It is called by the side that operates interface.
 /// The host is subscribed for events.
 /// </summary>
 event NewRawFrameEventHandler NewRawFrame;

 /// <summary>
 /// Event handler. It is called by the side that operates interface.
 /// The host is subscribed for the handler.
 /// </summary>
 event NewRawEventHandler NewEvent;

 /// <summary>
 /// Handler of a new record entering in the log. Informs the host that
 /// Connection Log field has changed (ref. below).
 /// The log is viewed in the Configurator after clicking the "Log History"
 /// It is called by the side that operates interface.
 /// The host is subscribed for the handler.
 /// </summary>
 event EventHandler NewLogRecord;

 /// <summary>
 /// A flag that denotes if it is necessary to enter a record in log.
 /// It is changed by host.
 /// </summary>
 bool IsWritingConnectionLog
 {
 get;
 set;
 }

 /// <summary>
 /// Current content of the connection log.
 /// </summary>
 string ConnectionLog
 {
 get;
 }

 /// <summary>
 /// If the stream is active
 /// </summary>
 /// <param name="streamType">Stream type</param>
 /// <returns></returns>
 bool IsStreamActive(ChannelStreamTypes streamType);

 /// <summary>
 /// Starts the specified stream to receive frames

Published on 10/24/2022

While implementing this interface, it is necessary to create a mechanism for working with

data streams, which can be a sequence of particular frame type, or a sequence of events.

Current Eocortex SDK version contains the following data stream types:

 /// </summary>
 /// <param name="streamType"></param>
 void StartStream(ChannelStreamTypes streamType);

 /// <summary>
 /// Stops the specified stream
 /// </summary>
 /// <param name="streamType"></param>
 void StopStream(ChannelStreamTypes streamType);

 /// <summary>
 /// Sends sound to the device (duplex sound realization).
 /// </summary>
 /// <param name="soundData"></param>
 void SendSound(byte[] soundData);

 /// <summary>
 /// Releases all resources. Closes all streams.
 /// </summary>
 void Release();
}

/// <summary>
/// Channel stream types.
/// </summary>
public enum ChannelStreamTypes : ulong
{
 /// <summary>
 /// Main video stream
 /// </summary>
 MainVideo = 1,

/// <summary>
/// Alternative video stream
/// </summary>
AlternativeVideo = 2,

 /// <summary>
 /// Camera sound stream.
 /// </summary>
 MainSound = 4,

/// <summary>
/// Alternative sound stream
/// </summary>
AlternativeSound = 8,

 /// <summary>
 /// Reverse sound stream.
 /// </summary>
 OutputSound = 16,

 /// <summary>
 /// Motion detection data stream.
 /// </summary>
 MotionDetection = 32,

 /// <summary>

Published on 10/24/2022

The data streams of different types are to be generated depending on the device capabilities

and the channel settings in the configurator.

MainVideo and AlterntaiveVideo data streams consist of RawVideoFrame video frames,

received from the camera.

MainSound and AlternativeSound, and OutputSound data streams consist of

RawSoundFrame sound frame sequence. MotionDetection data stream consists of

RawChEv_MDresults and Raw ChEv_NoDetection events sequence.

I/O stream consists of RawChEv_InputSignalLevelChanged events.

StartStream method starts the data streams from the host, in which the next stream is

initialized. The method has to immediately return control to the host and implement long-

term operations (input/output operations) in separate streams. Stopping the streams and

control of their activities using StopStream and IsStreamActive methods is called by the

host, and these actions must be completed immediately without any long-term operations.

Streams return the results of their operation to the host by calling frame (NewRawFrame)

and event (NewEvent) handlers.

For example, if the IP-device sends MJPEG frames, MainVideo (or AlternativeVideo), the

data stream must call NewRawFrame and transmit RawMJPEGFrame video frame as one

of the arguments:

Likewise, for MainSound (or AlternativeSound) data stream and sound in the G.711U

format, the frame RawG711UFrame is to be transmitted:

 /// Camera I/O system data stream
 /// </summary>
 IO = 64,

}

/// <summary>
/// MJPEG frame
/// </summary>
 [Serializable]
public class RawMJPEGFrame : RawVideoFrame
{

public RawMJPEGFrame() { }

/// <summary>
/// The frame data
/// </summary>
/// <param name="data"></param>
public RawMJPEGFrame(byte[] data)
{
 Data = data;
}

}

/// <summary>
/// G.711U frame
/// </summary>
[Serializable]
public class RawG711UFrame : RawSoundFrame
{

 /// <summary>
 /// The frame data
 /// </summary>
 /// <param name="data"></param>
 public RawG711UFrame(byte[] data)
 {

this.Data = data;
this.samplesRate = 8000;

Published on 10/24/2022

After the creation of the appropriate type video frame, completing the following fields of

RawFrame base class is required:

• Id – the frame identifier consisting of 2 parts: a sequence identifier (is generated at

random before receiving the data stream) and a frame ordinal number.

• Timestamp – the frame timestamp, defined in UTC format.

In MPEG-4 and H.264 codecs:

• It is obligatory for P-frames to complete Dependencies field containing all frame identifiers

on which the given frame depends.

• The decoder initializing information is to be defined in SpecInitData field in each I-frame.

Example of MJPEG frame creating:

where the initial settings are:

Example of H.264 I frame:

where initData is the initializing information for a decoder.

Example of H.264 P frame:

where frameDependencies is the array of frame identifiers the frame depends on. In other

words, it is a set of frames that must be decoded before the frame decoding.

Example of G.711U frame:

this.bitsPerSample = 16;
this.channels = 1;
this.bitrate = 64000;

}

}

RawMJPEGFrame jpegFrame = new RawMJPEGFrame(frameData);
jpegFrame.Id.SeqId = videoSeqId;
jpegFrame.Id.NumInSeq = videoNumInSeq++;
jpegFrame.TimeStamp = DateTime.UtcNow;

// video frame sequence identifier
Guid videoSeqId = Guid.NewGuid();
// Next video frame number in the sequence
long videoNumInSeq = 0;

RawH264_I_Frame iFrame = new RawH264_I_Frame(frameData);
iFrame.Id.SeqId = videoSeqId;
iFrame.Id.NumInSeq = videoNumInSeq++;
iFrame.TimeStamp = DateTime.UtcNow;
iFrame.SpecInitData = initData;

RawH264_P_Frame pFrame = new RawH264_P_Frame(frameData);
pFrame.Id.SeqId = videoSeqId;
pFrame.Id.NumInSeq = videoNumInSeq++;
pFrame.TimeStamp = DateTime.UtcNow;
pFrame.Dependencies = frameDependencies;

RawG711UFrame g711Frame = new RawG711UFrame(frameData);
g711Frame.Id.SeqId = audioSeqId;
g711Frame.Id.NumInSeq = audioNumInSeq++;
g711Frame.TimeStamp = DateTime.UtcNow;

Published on 10/24/2022

If during the receiving of data streams a connection with the IP device becomes lost, Frame

Receiver plugin must inform the host by generating RawChEv_NoDataConnection event

with the obligatorily completed StreamTypes field which shows streams with the lost

connection).

For registering frame receiver in the system, it is necessary to complete DevType_RegInfo

registration information of the device and the RTFR_RegInfo plugin registration information.

DevType_RegInfo class is described below:

/// <summary>
/// The device registration information.
/// is used during frame receiving plugin
/// registration.
/// </summary>
public class DevType_RegInfo
{
 /// <summary>
 /// Device identifier.
 /// </summary>
 public Guid DeviceTypeGuid;

 /// <summary>
 /// Name of manufacturer.
 /// </summary>
 public string DevTypeBrandName;

 /// <summary>
 /// Device name.
 /// </summary>
 public string DevTypeModelName;

 /// <summary>
 /// List of device capabilities.
 /// </summary>
 public DevType_Capabilities Capabilities;

 /// <summary>
 /// List of available resolutions for the device.
 /// </summary>
 public List<VideoResolutions> AvailableResolutions = new

List<VideoResolutions>();

 /// <summary>
 /// Delegate that allows host to change camera/ video server settings.
 /// </summary>
 public SetDeviceParametersDelegate SetDeviceParameters;

 /// <summary>
 /// Receiving IRealTimeFrameReceiver interface.
 /// </summary>
 public GetRTFRDelegate GetRTFR;

 /// <summary>
 /// Receiving PTZ interface.
 /// </summary>
 public GetPtzControllerDelegate GetPtzController;

 /// <summary>
 /// Receiving I/O interface.
 /// </summary>
 public GetIOControllerDelegate GetIOController;
}

Published on 10/24/2022

GetRTFR delegate, called by host, must return a specific implementation of

IRealTimeFrameReceiver interface. The delegate receives connection parameters

(ConnectionParameters) and substream parameters (SubStreamParameters), which

have been defined by the user in the channel configuration as arguments.

Capabilities of IP device with which the Frame Receiver plugin operates are described in the

Capabilities field:

If it is required to solve a task of controlling a tilting camera or its inputs/outputs (IO), the

IPtzController and/or IIOController interfaces need to be implemented:

/// <summary>
/// List of device capabilities
/// </summary>
public enum DevType_Capabilities : ulong
{

/// <summary>
 /// Device supports only cameras.
 /// </summary>
 SupportsCameras = 1,
 /// <summary>
 /// Device supports cameras and video servers.
 /// </summary>
 SupportsCamerasAndServers = 2,
 /// <summary>
 /// Device supports alternative stream.
 /// </summary>
 SupportsAlternativeVideoStream = 4,
 /// <summary>
 /// Parameters (resolution, fps, compression), described by

 /// SupportedDeviceParameters/SupportedExtraParameters arrays, are
independent of the format
 /// of the stream (are the same for mjpeg, mpeg4, h264).

 /// </summary>
 DeviceParametersFormatIndependent = 8,
}

/// <summary>
/// Unified interface of tilting camera control implementation.
/// </summary>
public interface IPtzController
{
 #region ----------------- BASE PART ------------------

 /// <summary>
 /// A camera initialization.
 /// </summary>
 /// <returns></returns>
 void Initialization();

 /// <summary>
 /// Returns the camera capabilities.
 /// </summary>
 /// <returns></returns>
 PtzCapabilities GetCapabilities();

 /// <summary>
 /// Returns names of camera presets.
 /// The number of elements in resulting array corresponds to the number of
 /// presets.
 /// Each preset corresponds to a number equal to the array index.
 /// </summary>

Published on 10/24/2022

 /// <returns>Names of camera presets.</returns>
 string[] GetPresetsNames();

 /// <summary>
 /// Defines a preset by its index.
 /// </summary>
 /// <param name="presetIndex"> The preset index.</param>
 void SetPresetPosition(int presetIndex);

 /// <summary>
 /// Moves the camera to the home position.
 /// </summary>
 void MoveToHome();

 /// <summary>
 /// Stops any PTZ command executing.
 /// </summary>
 void Stop();

 /// <summary>
 /// One step movement.
 /// </summary>
 /// <param name="panSpeed"> Horisontal speed. Range from -100 to
 /// 100.</param>
 /// <param name="tiltSpeed">Vertical speed. Range from -100 to
 /// 100.</param>
 void StepMove(int panSpeed, int tiltSpeed);

 /// <summary>
 /// Continuous (preferred flowing) motion.
 /// </summary>
 /// <param name="panSpeed">Horisontal speed. Range from -100 to
 /// 100.</param>
 /// <param name="tiltSpeed">Vertical speed. Range from -100 to
 /// 100.</param>
 void ContiniousMove(int panSpeed, int tiltSpeed);

 /// <summary>
 /// Relative zooming in.
 /// </summary>
 /// <param name="step">Step from 1 to 100.</param>
 void StepZoomIn(int step);

 /// <summary>
 /// Relative zooming out.
 /// </summary>
 /// <param name="step">Step from 1 to 100.</param>
 void StepZoomOut(int step);

 /// <summary>
 /// Continuous (preferred flowing) zooming in.
 /// </summary>
 /// <param name="speed">Speed. Range from 1 to 100.</param>
 void ContiniousZoomIn(int speed);

 /// Continuous (preferred flowing) zooming out.
 /// </summary>
 /// <param name="speed">Speed. Range from 1 to 100.</param>
 void ContiniousZoomOut(int speed);

 /// <summary>
 /// Returns the camera max. zooming in.

Published on 10/24/2022

 /// </summary>
 /// <returns>The camera max. zooming in. If the function is not
 /// supported, a negative number is returned.</returns>
 double GetMaxZoomFactor();

/// <summary>
 /// Returns the current camera zooming in.
 /// </summary>
 /// <returns> Current camera zooming in. If the function is not supported,
 /// a negative number is returned.</returns>
 double GetCurrentZoomFactor();

 /// <summary>
 /// Sets up absolute zooming in. No operation if camera does not support
 /// the function. Ref. PtzCapabilities.
 /// </summary>
 void SetZoomFactor(double factor);

 /// <summary>
 /// Sets max. zooming in.
 /// </summary>
 void ZoomTele();

 /// <summary>
 /// Sets min. zooming in.
 /// </summary>
 void ZoomWide();

 #endregion

 #region ----------------- SUPPLEMENTARY PART ------------------

 /// <summary>
 /// Turns the camera so that reference point is
 /// in the center of the frame area.
 /// </summary>
 /// <param name="point">Display point (in pixels) that is necessary to be put
 /// in the center by turning the camera.
 /// Starting point (0,0) is the upper-left corner of frame о</param>
 /// <param name="frameSize">The frame size in pixels</param>
 void MoveTo(System.Drawing.Point point, System.Drawing.Size frameSize);

 /// <summary>
 /// turns and zooms the camera so that
 /// controlled rectangle takes a full frame area.
 /// If rectangle aspect ratio does not correspond to that of the frame,
 /// then zooming is executed so that the whole rectangle
 ///fits within the frame.
 /// The rectangle center fits the frame center.
 /// </summary>
 /// <param name="rect">Rectangle is set in pixels</param>
 /// <param name="frameSize">Frame size in pixels</param>
 void ShowRect(System.Drawing.Rectangle rect, System.Drawing.Size frameSize);

 #endregion
}

/// <summary>
/// Unified interface of camera input/output control implementation
/// </summary>
public interface IIOController
{

Published on 10/24/2022

Pan-and-tilt (IO controller) capabilities must be returned using GetCapabilities() method to

inform the host about methods of optional capabilities implemented in the interface (if the

device supports them).

DevType_RegInfo registration information of the device must be defined at the stage of

loading the assembly and plugin in the class initialization method which realizes IPlugin

interface by calling RegisterDevType host interface method (see Plugin registration in

Eocortex).

Besides DevType_RegInfo, it is also necessary to complete the RTFR_RegInfo frame

receiver information:

 /// <summary>
 /// Initialization
 /// </summary>
 /// <returns></returns>
 void Initialization();

 /// <summary>
 /// Returns the camera capabilities.
 /// </summary>
 /// <returns></returns>
 IOCapabilities GetCapabilities();

 /// <summary>
 /// Sets the defined value in the output
 /// </summary>
 /// <param name="portID">Output No.</param>
 /// <param name="value">1 or 0</param>
 void SetOutput(int portID, int value);

 /// <summary>
 /// Supplies pulse sequence (PWM) in indicated output.
 /// It is not supported by all cameras.
 /// </summary>
 /// <param name="portID">Output No.</param>
 /// <param name="pulses"> Pulse array </param>
 void SetOutput(int portID, IOPulse[] pulses)
}

/// <summary>
/// The frame receiver registration information
/// </summary>
public class RTFR_RegInfo
{
 /// <summary>
 /// Device identifier
 /// </summary>
 public Guid DeviceTypeGuid;

 /// <summary>
 /// Data stream format
 /// </summary>
 public VideoStreamFormats StreamFormat;

 /// <summary>
 /// Connection protocol used
 /// </summary>
 public NetworkConnectionTypes ConnectionType;

 /// <summary>
 /// The device capabilities using the set format StreamFormat
 /// </summary>

Published on 10/24/2022

This information must be specified as many times as many different stream formats the IP

device supports.

Similar to DevType_RegInfo, RTFR_RegInfo information must be defined at the stage of

assembly and plugin loading in IPlugin interface of class initialization method. Call the host

interface RegisterDevType method to complete it. Example of completing the classes is

given below:

 public RTFR_Capabilities Capabilities;
}

public void Initialize(IPluginHost host)
{

DevType_RegInfo KingNet_KS3002MJ_Device = new DevType_RegInfo();
KingNet_KS3002MJ_Device.DeviceTypeGuid =

new Guid("5C49C51D-B17B-40b0-9656-6DC71DD86D90");
KingNet_KS3002MJ_Device.DevTypeModelName = "KS3002MJ";
KingNet_KS3002MJ_Device.DevTypeBrandName = "KingNet";
KingNet_KS3002MJ_Device.AvailableResolutions = GetConcreteResolutions();
KingNet_KS3002MJ_Device.Capabilities = DevType_Capabilities.SupportsCameras;
KingNet_KS3002MJ_Device.GetPtzController = null;
KingNet_KS3002MJ_Device.GetRTFR = (conParam, subParams) =>
{
 RealTimeFrameReceiver rtfr = new RealTimeFrameReceiver(conParam,
subParams);
 return rtfr;
};
KingNet_KS3002MJ_Device.SetDeviceParameters = (conParams, subParams) =>
{
 return true;
};

host.RegisterDevType(KingNet_KS3002MJ_Device);

RTFR_RegInfo rtfrKingNet_KS3002MJ_Mjpeg = new RTFR_RegInfo();
rtfrKingNet_KS3002MJ_Mjpeg.DeviceTypeGuid =

new Guid("5C49C51D-B17B-40b0-9656-6DC71DD86D90");
rtfrKingNet_KS3002MJ_Mjpeg.StreamFormat = VideoStreamFormats.MJPEG;
rtfrKingNet_KS3002MJ_Mjpeg.ConnectionType = NetworkConnectionTypes.UDP;
rtfrKingNet_KS3002MJ_Mjpeg.Capabilities.SupportedStreamTypes =

ChannelStreamTypes.MainVideo;
rtfrKingNet_KS3002MJ_Mjpeg.Capabilities.SupportedExtraParameters =

new DeviceParameters[] { DeviceParameters.Null, DeviceParameters.Null };
rtfrKingNet_KS3002MJ_Mjpeg.Capabilities.SupportedDeviceParameters =

new DeviceParameters[] { DeviceParameters.Null, DeviceParameters.Null };

host.RegisterRTFR(rtfrKingNet_KS3002MJ_Mjpeg);

}

Published on 10/24/2022

Eocortex API with HTTP and RTSP interfaces

Eocortex API lets the user to contact the server using either HTTP or RTSP interface

to receive real time and archived video streams. It is also possible to use HTTP interface to obtain

system information and to send commands to the system to perform certain actions. Various

types of requests are described below.

User password (password parameter) is sent as MD5 hash

in upper case.

HTTP interface for receiving data

For complex interactions with the system via API and executing some of the requests listed

in this guide, information about the configuration and current state of the system, which is

not displayed in the Eocortex GUI, can be obtained. Such information can be obtained using

the CGI requests listed in this section.

Such requests in general have the following format:

Where:

{Protocol}://{Server}:{Port}/{Resource}?login={Login}&password={Password}&{Paramete
r}={Parameter value}

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default

ports: 8080 for http; 18080 for https

Resource — URI of the server resource to which the request is addressed

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password —
md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or

not specified in the request

Parameter —

An additional parameter that specifies the request itself or

the answer to it. Depending on the request, it may be

possible to apply multiple additional parameters at the same

time

Parameter
value

—
Value of the applied additional parameter

A number of requests may have the same command resource. In this case the

type of request is specified by the type parameter.

Some additional parameters are mandatory for request execution.

Published on 10/24/2022

By default, the data is received in XML format. For some requests, however, there is a

possibility to return data in JSON format. To do that it is required to specify

responsetype=json parameter.

If there is no clear indication of the possibility to return data in JSON in a request description,

it is assumed that it is to be returned in XML only.

Receiving system configuration

Requests to the system's API may require information about the components of the current

configuration of the system. Such information can be obtained by requesting the configex

resource.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

Example of a response in XML format:

Receiving response in JSON format is supported.

Parameter Default

value

Description

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/configex?login=root&password=

http://127.0.0.1:8080/configex?login=root&password=&responsetype=json

<?xml version="1.0" encoding="UTF-8"?>
<Configuration Id="b4ca3dbb-99a3-47d3-b603-2a631f03a375"

SenderId="ec3260bd-303d-4c35-8a39-2b80289d3c20"
Revision="72"
Timestamp="2023-06-07T06:30:15.3279409Z"
XMLProtocolVersion="2"
ServerVersion="4.1.23"
ProductType="Ultra"
UseTimeZones="false">

<Servers>
<ServerInfo Id="ec3260bd-303d-4c35-8a39-2b80289d3c20"

Name="Server 1"
Url="192.168.200.87:8080"
PrimaryIp="192.168.200.87"
PrimaryPort="8080"
PrimarySslPort="18080"
SecondaryIp="192.168.101.223"
SecondaryPort="8081"
SecondarySslPort="18081"/>

</Servers>
<Channels>

<ChannelInfo Id="706c4691-3d90-41e3-8789-76eb9810648f"
Name="Camera 1"
Description=""
DeviceInfo="HikVision DS-2xxxxxx, DS-N2xx"
AttachedToServer="ec3260bd-303d-4c35-8a39-2b80289d3c20"
IsDisabled="false"
IsSoundOn="false"

Published on 10/24/2022

IsArchivingEnabled="true"
IsSoundArchivingEnabled="true"
AllowedRealtime="true"
AllowedArchive="true"
IsPtzOn="false"
IsTransmitSoundOn="false"
ArchiveMode="AlwaysOn"
ArchiveStreamType="Main"
ArchiveVideoFormat="H264"
ArchiveRotationMode="None"
IsFaceAnalystEnabled="false"
IsPeopleCountingOn="false"
IsObjectCountingOn="false"
TimeZoneOffset="5">

<Streams>
<StreamInfo StreamType="Main"

StreamFormat="H264"
RotationMode="None"/>

<StreamInfo StreamType="Alternative"
StreamFormat="H264"
RotationMode="By90ClockwiseDegree"/>

<StreamInfo StreamType="SecondAlternative"
StreamFormat="MJPEG"
RotationMode="By90AntiClockwiseDegree"/>

<StreamInfo StreamType="ThirdAlternative"
StreamFormat="MJPEG"
RotationMode="By180Degree"/>

</Streams>
<UserScenarios>

<XmlUserScenarioInfo Id="98e9e96b-db9a-4a22-94a8-67c957d7e1fc"
Name="Manual alarm start"
NeedConfirmation="false"/>

</UserScenarios>
<GeoPosition Latitude="53.78760846056143"

Longitude="-1.5578699111938477"
Azimuth="90"/>

</ChannelInfo>
</Channels>
<RootSecurityObject Id="f50f5174-1e91-40c2-8d91-ad32119f84f3">

<ChildSecurityObjects>
<SecObjectInfo Id="1bee6c88-fdfd-41fd-8d9c-cd8decb8b145" Name="Этаж 1">

<ChildSecurityObjects/>
<ChildChannels>

<ChannelId>a3c5842b-e279-4614-8dc7-9747c5e75899</ChannelId>
</ChildChannels>

</SecObjectInfo>
</ChildSecurityObjects>
<ChildChannels/>

</RootSecurityObject>
<UserGroup>

<GridTypesAllowed>
<GridTypes>GridType1</GridTypes>
<GridTypes>GridType2</GridTypes>
<GridTypes>GridType3</GridTypes>
<GridTypes>GridType4</GridTypes>
<GridTypes>GridType6</GridTypes>
<GridTypes>GridType7</GridTypes>
<GridTypes>GridType12X11</GridTypes>

</GridTypesAllowed>
<Id>9a8645d1-3665-4b42-b6ef-864fa8f60c64</Id>
<Name>Administrators</Name>
<CanConfigure>true</CanConfigure>

Published on 10/24/2022

<CanConfigureWorkplace>true</CanConfigureWorkplace>
<CanShutdown>true</CanShutdown>
<CanChangeChannelMode>true</CanChangeChannelMode>
<CanManageRec>true</CanManageRec>
<CanAccessExpertMode>true</CanAccessExpertMode>
<CanPTZ>true</CanPTZ>
<PtzPriority>Minimal</PtzPriority>
<CanReceiveSound>true</CanReceiveSound>
<CanTransmitSound>true</CanTransmitSound>
<CanAccessNewCamera>false</CanAccessNewCamera>
<CanAccessReports>true</CanAccessReports>
<CanGetTranscodedVideoFromMobileServer>true</CanGetTranscodedVideoFromMobileS

erver>
<CanAccessEditingAnalystPluginsInClient>true</CanAccessEditingAnalystPluginsI

nClient>
<CanAccessVideoViaWeb>true</CanAccessVideoViaWeb>
<CanAccessVideoViaSmartTV>true</CanAccessVideoViaSmartTV>
<CanExportVideoToAvi>true</CanExportVideoToAvi>
<CanUseArchiveExport>true</CanUseArchiveExport>
<CanReceiveMainStream>true</CanReceiveMainStream>
<IsAllForbidden>false</IsAllForbidden>
<CanAccessUnifiedLog>true</CanAccessUnifiedLog>
<CanAccessArchiveMarks>true</CanAccessArchiveMarks>
<CanAccessSearch>true</CanAccessSearch>
<CanAccessToAllUsersInUnifiedLog>true</CanAccessToAllUsersInUnifiedLog>
<CanReceiveMobilePush>true</CanReceiveMobilePush>
<MessengerCanSendMessages>true</MessengerCanSendMessages>
<MessengerCanReceiveMessages>true</MessengerCanReceiveMessages>
<CanConfigureVideowall>true</CanConfigureVideowall>
<CanBrowsingVideowall>true</CanBrowsingVideowall>
<CanAccessPlans>true</CanAccessPlans>
<CanChangePassword>true</CanChangePassword>
<CanRunUserScenarios>true</CanRunUserScenarios>
<CanAccessGis>true</CanAccessGis>

</UserGroup>
<MobileServerInfo IsEnabled="true"

IsProxyEnabled="true"
IsMobilePushEnabled="true"
Port="8089"
UsePFrames="false"
FpsLimit="0"
LowResolution="120 x 90"
MiddleResolution="240 x 180"
HighResolution="800 x 480">

<Resolutions>
<ResolutionInfo Width="800"

Height="480"
IsEnabled="true"
FpsLimit="15"
UsePFrames="true"
Type="High"/>

<ResolutionInfo Width="240"
Height="180"
IsEnabled="true"
FpsLimit="4"
UsePFrames="false"
Type="Middle"/>

<ResolutionInfo Width="120"
Height="90"
IsEnabled="false"
FpsLimit="4"
UsePFrames="false"

Published on 10/24/2022

Example of a response in JSON format:

Type="Low"/>
</Resolutions>

</MobileServerInfo>
<RtspServerInfo IsEnabled="true"

TcpPort="554"
IsMjpegEnabled="true"/>

<MobileDevicesCapabilities>
<Archive>true</Archive>
<Ptz>true</Ptz>
<Hls>true</Hls>
<AppleMobilePush>true</AppleMobilePush>
<AndroidMobilePush>true</AndroidMobilePush>
<Profiles>true</Profiles>
<UserScenarios>true</UserScenarios>
<SmartAssistant>true</SmartAssistant>
<Gis>true</Gis>

</MobileDevicesCapabilities>
<WorldMapConfig>

<Locations Name="All locations">
<ChildLocations>

<Location Name="Local office
Latitude="53.788007776832465"
Longitude="-1.541484296321869"
Zoom="19"/>

<Location Name="Head office"
Latitude="53.787638567873074"
Longitude="-1.543552279472351"
Zoom="19"/>

</ChildLocations>
<ChildFolders>
<FolderLocation Name="Locations in progress">

<ChildLocations>
<Location Name="Business center"

Latitude="53.788853934465465"
Longitude="-1.5443569421768188"
Zoom="19"/>

</ChildLocations>
<ChildFolders/>

</FolderLocation>
</ChildFolders>

</Locations>
</WorldMapConfig>

</Configuration>

{
 "Id": "b4ca3dbb-99a3-47d3-b603-2a631f03a375",
 "SenderId": "ec3260bd-303d-4c35-8a39-2b80289d3c20",
 "RevNum": 72,
 "Timestamp": "2023-06-07T06:30:15.3279409Z",
 "XmlProtocolVersion": 2,
 "ServerVersion": "4.1.23",
 "ProductType": "Ultra",
 "Servers": [
 {
 "Id": "ec3260bd-303d-4c35-8a39-2b80289d3c20",
 "Name": "Server 1",
 "Url": "192.168.200.87:8080",
 "PrimaryIp": "192.168.200.87",
 "PrimaryPort": "8080",

Published on 10/24/2022

 "PrimarySslPort": "18080",
 "SecondaryIp": "",
 "SecondaryPort": "0",
 "SecondarySslPort": "0",
 "ConnectionUrl": null
 }
],
 "Channels": [
 {
 "Id": "706c4691-3d90-41e3-8789-76eb9810648f",
 "Name": "Camera 1",
 "Description": "",
 "DeviceInfo": "HikVision DS-2xxxxxx, DS-N2xx",
 "AttachedToServer": "ec3260bd-303d-4c35-8a39-2b80289d3c20",
 "IsDisabled": false,
 "IsSoundOn": false,
 "IsArchivingEnabled": true,
 "IsSoundArchivingEnabled": true,
 "AllowedRealtime": true,
 "AllowedArchive": true,
 "IsPtzOn": false,
 "IsTransmitSoundOn": false,
 "ArchiveMode": "AlwaysOn",
 "Streams": [
 {
 "StreamType": "Main",
 "StreamFormat": "H264",
 "RotationMode": "None"
 },
 {
 "StreamType": "Alternative",
 "StreamFormat": "H264",
 "RotationMode": "By90ClockwiseDegree"
 },
 {
 "StreamType": "SecondAlternative",
 "StreamFormat": "MJPEG",
 "RotationMode": "By90AntiClockwiseDegree"
 },
 {
 "StreamType": "ThirdAlternative",
 "StreamFormat": "MJPEG",
 "RotationMode": "By180Degree"
 }
],
 "UserScenarios": [
 {
 "Id": "98e9e96b-db9a-4a22-94a8-67c957d7e1fc",
 "Name": "Manual alarm start",
 "NeedConfirmation": false
 }
],
 "ArchiveStreamType": "Main",
 "ArchiveVideoFormat": "H264",
 "ArchiveRotationMode": "None",
 "IsFaceRecOn": false,
 "GeoPosition": {
 "Latitude": 53.78760846056143,
 "Longitude": -1.5578699111938477,
 "Azimuth": 90.0
 },
 "IsPeopleCountingOn": false,

Published on 10/24/2022

 "IsObjectCountingOn": false,
 "TimeZoneOffset": 5.0
 }
],
 "RootSecObject": {
 "ChildSecObjects": [
 {
 "ChildSecObjects": [],
 "ChildChannels": [
 "a3c5842b-e279-4614-8dc7-9747c5e75899"
],
 "Id": "1bee6c88-fdfd-41fd-8d9c-cd8decb8b145",
 "Name": "Этаж 1"
 }
],
 "ChildChannels": [],
 "Id": "f50f5174-1e91-40c2-8d91-ad32119f84f3",
 "Name": null
 },
 "UserGroup": {
 "GridTypesAllowed": [
 "GridType1",
 "GridType2",
 "GridType3",
 "GridType4",
 "GridType6",
 "GridType7",
 "GridType12X11"
],
 "Id": "9a8645d1-3665-4b42-b6ef-864fa8f60c64",
 "Comment": null,
 "Name": "Administrators",
 "CanConfigure": true,
 "CanConfigureWorkplace": true,
 "CanShutdown": true,
 "CanChangeChannelMode": true,
 "CanManageRec": true,
 "CanAccessExpertMode": true,
 "CanPTZ": true,
 "PtzPriority": "Minimal",
 "CanReceiveSound": true,
 "CanTransmitSound": true,
 "CanAccessNewCamera": false,
 "CanAccessReports": true,
 "CanGetTranscodedVideoFromMobileServer": true,
 "CanAccessEditingAnalystPluginsInClient": true,
 "CanAccessVideoViaWeb": true,
 "CanAccessVideoViaSmartTV": true,
 "CanExportVideoToAvi": true,
 "CanUseArchiveExport": true,
 "CanReceiveMainStream": true,
 "IsAllForbidden": false,
 "CanAccessUnifiedLog": true,
 "CanAccessArchiveMarks": true,
 "CanAccessSearch": true,
 "CanAccessToAllUsersInUnifiedLog": true,
 "CanReceiveMobilePush": true,
 "MessengerCanSendMessages": true,
 "MessengerCanReceiveMessages": true,
 "CanConfigureVideowall": true,
 "CanBrowsingVideowall": true,
 "CanAccessPlans": true,

Published on 10/24/2022

 "CanChangePassword": true,
 "CanRunUserScenarios": true,
 "CanAccessGis": true
 },
 "MobileServerInfo": {
 "IsEnabled": true,
 "IsProxyEnabled": true,
 "IsMobilePushEnabled": true,
 "Port": 8089,
 "UsePFrames": false,
 "FpsLimit": 0,
 "LowResolution": "120 x 90",
 "MiddleResolution": "240 x 180",
 "HighResolution": "800 x 480",
 "Resolutions": [
 {
 "Width": 800,
 "Height": 480,
 "IsEnabled": true,
 "FpsLimit": 15,
 "UsePFrames": true,
 "Type": "High"
 },
 {
 "Width": 240,
 "Height": 180,
 "IsEnabled": true,
 "FpsLimit": 4,
 "UsePFrames": false,
 "Type": "Middle"
 },
 {
 "Width": 120,
 "Height": 90,
 "IsEnabled": false,
 "FpsLimit": 4,
 "UsePFrames": false,
 "Type": "Low"
 }
]
 },
 "RtspServerInfo": {
 "IsEnabled": true,
 "TcpPort": 554,
 "IsMjpegEnabled": true
 },
 "MobileDevicesCapabilities": {
 "Archive": true,
 "Ptz": true,
 "Hls": true,
 "AppleMobilePush": true,
 "AndroidMobilePush": true,
 "Profiles": true,
 "UserScenarios": true,
 "SmartAssistant": true,
 "Gis": true
 },
 "WorldMapConfig": {
 "Locations": {
 "Name": "All locations",
 "ChildLocations": [
 {

Published on 10/24/2022

Regardless of the selected data representation format, the response from the server will

contain the same extensive information about the current system configuration, split into

several sections.

The Configuration section, in addition to the structural inclusion of the other sections,

contains the following elements on its own:

 "Name": "Local office",
 "Latitude": 53.788007776832465,
 "Longitude": -1.541484296321869,
 "Zoom": 19.0
 },
 {
 "Name": "Head office",
 "Latitude": 53.787638567873074,
 "Longitude": -1.543552279472351,
 "Zoom": 19.0
 }
],
 "ChildFolders": [
 {
 "Name": "Locations in progress",
 "ChildLocations": [
 {
 "Name": "Business center",
 "Latitude": 53.788853934465465,
 "Longitude": -1.5443569421768188,
 "Zoom": 19.0
 }
],
 "ChildFolders": []
 }
]
 }
 },
 "UseTimeZones": false
}

Parameter Description

Id Unique identifier of the current configuration

SenderId or
RevNum

Unique identifier of the responded server

Revision Number of the current configuration revision. The number increments

by one after each application of configuration changes

Timestamp Timestamp of the last configuration application

XMLProtocolVe
rsion

Version of the XML protocol. At the moment the protocol number is 2.

Its change in the future supposes the possibility of adding new

elements and attributes to the xml-response

ServerVersion Version of Eocortex installed on the responded server

ProductType Type of license activated on the responded server

UseTimeZones The state of the Consider time zones option. Possible values: true -

option on, false - off

Published on 10/24/2022

The Servers section contains a description of the servers belonging to the current

configuration. Each server is described by the ServerInfo element, which contains the

following elements:

The Channels section contains a description of the channel settings in the current

configuration. Settings of each channel are described by the ChannelInfo element, which

consists of the following attributes and subsections:

Parameter Description

Id Unique server identifier

Name Name of the server within the current configuration

Url URL of the server

PrimaryIp Main IP address of the server

PrimaryPort Main HTTP port of the server

PrimarySslPor
t

Main HTTPS port of the server

SecondaryIp Additional IP address of the server

SecondaryPort Additional HTTP port of the server

SecondarySslP
ort

Additional HTTPS port of the server

Parameter Description

Id Unique identifier of the channel. Can be used in other requests to

specify the required camera with the channelid parameter

Name Name of the channel within the current configuration

Description Description of the camera. Can be set up using the REST API

DeviceInfo Manufacturer and Model of the device specified for the channel

AttachedToSer
ver

Unique identifier of the server to which the channel belongs

IsDisabled State of the channel in the current configuration. Possible values: true

— channel disabled, false — enabled

IsSoundOn State of the option to receive sound from the camera on the specified

channel. If this parameter is false, the IsSoundArchivingEnabled

parameter can be ignored. Possible values: true — receiving sound is

enabled, false — disabled

IsArchivingEn
abled

State of the video data archiving option for the channel. Possible

values: true - archiving enabled, false - disabled

IsSoundArchiv
ingEnabled

State of the audio data archiving option for the channel. Possible

values: true - archiving enabled, false - disabled

AllowedRealti
me

Availability of watching video of this channel in real time for the user

who sent the request. Possible values: true — viewing is allowed, false

— denied

AllowedArchiv
e

Availability of watching video of this channel from the archive for the

user who sent the request. Possible values: true — viewing is allowed,

false — denied

IsPtzOn State of the PTZ control option of the camera within this channel.

Possible values: true — control enabled, false — disabled

IsTransmitSou
ndOn

State of the option for transmitting sound to the camera speaker.

Possible values: true — audio transmission enabled, false - disabled

ArchiveMode Archive recording mode set for the channel. Possible values: AlwaysOn

- recording is always active, OnlyManual - activates manually,

BySchedule - activates according to the schedule, MDandManual -

Published on 10/24/2022

The RootSecurityObject section contains information about the structure of the security

object tree and channel belonging. Consists of the following elements:

activates manually and automatically on demand from the motion

detector

ArchiveStream
Type

Video stream specified for archive recording. Possible values are the

same as for the StreamType element

ArchiveVideoF
ormat

Format set for the video stream to be archived. Possible values are the

same as for the StreamFormat element

ArchiveRotati
onMode

Image rotation settings for the stream to be archived. Possible values

are the same as for the RotationMode element

IsFaceAnalyst
Enabled или
IsFaceRecOn

State of the Face Recognition module. Possible values: true — module

enabled, false — disabled

IsPeopleCount
ingOn

State of the People Counting module. Possible values: true — module

enabled, false — disabled

IsObjectCount
ingOn

State of the Object Classification and Counting module. Possible values:

true — module enabled, false — disabled

TimeZoneOffse
t

Camera time zone relative to UTC

Streams Subsection containing settings of video data streams of the channel.

The number of subsections depends on the settings of receiving

streams for the given channel. Contains the following elements:

• StreamType — type of stream. Possible values: Main — Main,

Alternative — Additional 1, SecondAlternative — Additional

2, ThirdAlternative — Additional 3.

• StreamFormat — format of the video stream. Possible values:

H264, Hevc (corresponds to H.265), MJPEG, MPEG4_Part2,

MxPeg.

• RotationMode — settings of image rotation for the video

stream. Possible values: None — no rotation,

By90ClockwiseDegree — 90 degrees clockwise,

By90AntiClockwiseDegree — 90 degrees counterclockwise,

By180Degree — 180 degrees

UserScenarios Subsection containing information about the User tasks created for the

channel. Contains the following elements:

• Id — unique identifier of the task.

• Name — the name of the task within the current configuration.

• NeedConfirmation — the state of the Confirmation of action

option. Possible values: true — the task requires confirmation,

false — the task starts without additional confirmation

GeoPosition Subsection containing information about the camera coordinates on the

map. Available only for systems with Enterprise and Ultra licenses.

Contains the following elements:

● Latitude — latitude.

● Longtitude — longtitude.

● Azimuth — azimuth

Parameter Description

Id Unique identifier of the security object

Name Name of the object within the current configuration

ChildChannels Identifiers of channels belonging to the object

Published on 10/24/2022

The UserGroup section contains information about the settings of the group to which the

user who made the configuration request belongs. Consists of the following elements and

subsections:

The MobileServerInfo section contains information about the mobile server's video

transcoding parameters. Consists of the following elements and subsections:

The RtspServerInfo section contains settings of the RTSP server used for receiving video

streams from the system by third-party applications. Consists of the following elements:

ChildSecObjec
ts

Subsection corresponding to an object nested in another object

(Subfolder). In turn, it contains a list of elements the same as the root

section of RootSecurityObject

Parameter Description

Id Unique identifier of the group

Comment Comment added to the group within the current configuration

Name Name of the group within the current configuration

GridTypesAllo
wed

List of grids available to this group to create views

— A list of access rights to various system components. Possible values for

the rights: true - the right is enabled, false - the right is disabled

Parameter Description

IsEnabled State of stream transcoding mechanism of the mobile server. Possible

values: true — transcoding of streams into the specified parameters is

enabled, false — disabled

IsProxyEnable
d

Option to redirect requests to HTTP(S) port instead of using own port of

the mobile server. Possible values: true — HTTP(S) server port is used,

false — native port of mobile server is used

IsMobilePushE
nabled

Option to send Push notifications to mobile applications. Possible

values: true — sending Push notifications is allowed, false — sending

is prohibited

Port Mobile server's own port. Used for interaction with mobile applications if

IsProxyEnabled=false

UsePFrames Use predicted frames (P-frames) when passing streams to mobile

applications. Possible values: true — both intra-coded (I-) and

predicted (P-) frames are transmitted, false — only intra-coded frames

are transmitted

FpsLimit Limit of the number of frames per second when transcoding a stream

LowResolution Resolution of the low resolution stream

MiddleResolut
ion

Resolution of the medium resolution stream

HighResolutio
n

Resolution of the high resolution stream

Resolutions Subsection containing detailed information about the settings for low,

medim, and high quality streams. Consists of the following elements:

• Width — frame width.

• Height — frame height.

• Type — stream type. Possible values: High, Middle, Low.

Parameter Description

IsEnabled Availability of RTSP server for connections. Possible values: true -

enabled, false - disabled

Published on 10/24/2022

The MobileDevicesCapabilities section contains information about the interaction

capabilities between mobile applications and the system.

Consists of the following elements:

The WorldMapConfig section contains settings for Locations created on maps. Available only

for systems with Enterprise and Ultra licenses. Consists of the following elements and

subsections:

Receiving the list of grids available in the Eocortex Client

TcpPort Port for connecting to the RTSP server

IsMjpegEnable
d

State of the Allow Mjpeg broadcasting via RTSP option. Possible

values: true — on, false — off

Content of this section depends on the system version, not on its settings. The

ability to use a particular option depends on whether it is supported in the installed

Eocortex version. The value of the items in this section is always true.

Parameter Description

Archive Ability to view the archive of the system using a mobile app

Ptz Ability to control PTZ camera functionality using a mobile app

Hls Server-side support for HLS protocol

AppleMobilePu
sh

Server ability to send Push notifications to iOS mobile apps

AndroidMobile
Push

Server ability to send Push notifications to Android mobile apps

Profiles Accessibility of views created in the system for mobile apps

UserScenarios Ability to trigger the execution of user tasks configured for system

cameras from mobile applications

SmartAssistan
t

Ability of interaction with the system with the EVA assistant

Gis Mobile app access to maps and objects on them

Parameter Description

Name Name of a location or a group of locations

Latitude Latitude value for the central point of the location

Longtitude Longitude value for the central point of the location

Zoom Map zoom level for the location

ChildLocation
s

Subsection containing the list of locations belonging to the group

ChildFolders Subsection containing a group of locations created within another group

of locations (Subfolder). In turn, it contains a list of elements the same

as the root WorldMapConfig section

Receiving response in JSON format is supported.

Published on 10/24/2022

To get the list of grids that can be used by the user on whose behalf the client application is

currently connected to the Eocortex server, a request to the command resource with the

type getgrids is used.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

As a response, the server retrieves a list of available grids on the specified client.

Example of a response in XML format:

Example of a response in JSON format:

Parameter Default

value

Description

clientip —
IP address of the device on which the client application is

running. Necessary parameter

monitor —
Monitor number in the current client application

configuration (Starts from 0). Necessary parameter

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/command?type=getgrids&login=root&password=&clientip=192.168.1
.2&monitor=0

http://127.0.0.1:8080/command?type=getgrids&login=root&password=&clientip=192.168.1
.2&monitor=0&responsetype=json

<ArrayOfString>

<string>1</string>

<string>4</string>

<string>6_1</string>

<string>7</string>

<string>8_1</string>

<string>9</string>

<string>10</string>

<string>13</string>

<string>16</string>

<string>25</string>

</ArrayOfString>

[
 "1",
 "4",
 "6_1",
 "7",
 "8_1",
 "9",
 "10",
 "13",
 "16",
 "25"
]

Published on 10/24/2022

Where:

The obtained data can be used for changing the grid on the client.

Receiving the list of screen profiles from (views) from the server

For a list of screen profiles (more commonly known as views) created on the server, a request

to the command resource with the type getprofiles is used.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

As a response, the server returns a list of server profiles available for the user who sent the

request.

Example of a response in XML format:

Parameter Description

Value before "_" Number of cells in the grid

Value after "_" Configuration number

Configuration number exists only for grids that have the same number of cells, but

differ in size and arrangement of these cells.

Receiving response in JSON format is supported.

Parameter Default

value

Description

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/command?type=getprofiles&login=root&password=

http://127.0.0.1:8080/command?type=getprofiles&login=root&password=&responsetype=js
on

A view is considered unavailable if it does not contain cameras that the user can

view, and if the user has no rights to use that view.

<ArrayOfMapInfo>

<MapInfo>

<Id>22ab7b5e-a8e0-48f9-80ff-a48217baa21f</Id>

<Name>Office</Name>

</MapInfo>

<MapInfo>

<Id>f2294ff9-783c-4b49-b5ab-a8fd0529da99</Id>

<Name>Warehouse</Name>

</MapInfo>

</ArrayOfMapInfo>

Published on 10/24/2022

Example of a response in JSON format:

Where:

Receiving information about the current screen profile in the

Eocortex client

To get information about the profile currently used on the selected Eocortex client monitor,

use the request to the command resource with the type getcurrentgrid.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

[

 {

 "Id": "22ab7b5e-a8e0-48f9-80ff-a48217baa21f",

 "Name": "Office"

 },

 {

 "Id": "f2294ff9-783c-4b49-b5ab-a8fd0529da99",

 "Name": "Warehouse"

 }

]

Parameter Description

Id Unique identifier of the profile. Can be used when sending a request to set
the profile on the client

Name Name of the profile within the current configuration

Receiving response in JSON format is supported.

Parameter Default

value

Description

clientip —
IP address of the device on which the Eocortex client

application is running. Necessary parameter

monitor —
Number of the monitor in the current configuration of the

client application. Starts at 0. Necessary parameter

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

The clientip value must contain the actual Eocortex client address. Using localhost

(127.0.0.1) will cause an error even when accessing a client installed on the server.

http://127.0.0.1:8080/command?type=getcurrentgrid&login=root&password=&clientip=192
.168.1.2&monitor=0

http://127.0.0.1:8080/command?type=getcurrentgrid&login=root&password=&clientip=192
.168.1.2&monitor=0&responsetype=json

Published on 10/24/2022

In response, the server returns information about the current profile, the type of grid used in

it, and its contents.

Example of a response in XML format:

Example of a response in JSON format:

<ViewInfo>

<GridType>GridType3</GridType>

<ViewInfoId>20db65ef-17fb-4d75-9513-acb8535d552b</ViewInfoId>

<GridCells>

<GridCellParameters>

<ChannelId>a3785d7f-9259-456b-a64a-048342f22964</ChannelId>

<CellIndex>0</CellIndex>

<IsArchive>false</IsArchive>

<ArchiveStartTime xsi:nil="true"/>

<ArchivePlaySpeed>1</ArchivePlaySpeed>

</GridCellParameters>

<GridCellParameters>

<ChannelId>706c4691-3d90-41e3-8789-76eb9810648f</ChannelId>

<CellIndex>1</CellIndex>

<IsArchive>true</IsArchive>

<ArchiveStartTime>2023-06-09T14:09:43.7434941Z</ArchiveStartTime>

<ArchivePlaySpeed>1</ArchivePlaySpeed>

</GridCellParameters>

<GridCellParameters>

<ChannelId>00000000-0000-0000-0000-000000000000</ChannelId>

<CellIndex>2</CellIndex>

<IsArchive>false</IsArchive>

<ArchiveStartTime xsi:nil="true"/>

<ArchivePlaySpeed>0</ArchivePlaySpeed>

</GridCellParameters>

</GridCells>

<ViewName>Office</ViewName>

</ViewInfo>

{
 "GridType": "GridType3",
 "ViewInfoId": "20db65ef-17fb-4d75-9513-acb8535d552b",
 "GridCells": [
 {
 "ChannelId": "a3785d7f-9259-456b-a64a-048342f22964",
 "CellIndex": 0,
 "IsArchive": false,
 "ArchiveStartTime": null,
 "ArchivePlaySpeed": 1.0
 },
 {
 "ChannelId": "706c4691-3d90-41e3-8789-76eb9810648f",
 "CellIndex": 1,
 "IsArchive": true,
 "ArchiveStartTime": 2023-06-09T14:09:43.7434941Z,

Published on 10/24/2022

Where:

Receiving the current time of Eocortex server

To get information about the current time of the computer running the Eocortex server, a

request to the command resource with the gettime type can be used.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

 "ArchivePlaySpeed": 1.0
 },
 {
 "ChannelId": "00000000-0000-0000-0000-000000000000",
 "CellIndex": 2,
 "IsArchive": false,
 "ArchiveStartTime": null,
 "ArchivePlaySpeed": 0.0
 }
],
 "ViewName": "Office"
}

Parameter Description

GridType Type of grid used for the selected profile

ViewInfoId Unique identifier of the profile

GridCells Subsection describing the contents of the cells of the selected profile .

• ChannelId — unique identifier of the channel placed in the cell.

• CellIndex — cell number (Starts from zero).

• IsArchive — state of the archive display mode in the cell. Possible

values: true — the cell is in archive view mode, false —

displaying real-time stream.

• ArchiveStartTime — the current position in the archive in UTC.

• ArchivePlaySpeed — video playback speed in the cell. Possible

values: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 60, 120. When

displaying the real-time stream, the value is always 1

ViewName Name of the profile within the current configuration

The obtained data can be used for setting the profile on the client.

Receiving response in JSON format is supported.

Parameter Default

value

Description

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/command?type=gettime&login=root&password=

http://127.0.0.1:8080/command?type=gettime&login=root&password=&responsetype=json

Published on 10/24/2022

As a response, the server returns the current time of the computer in the UTC time zone.

Example of a response in XML format:

Example of a response in JSON format:

Receiving information about the availability of the archive for the

specified moment of time

To get information about the availability of data in the archive for a certain point in time, a

request to the resource command with the type findarchive can be used.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

<string>14.06.2023 07:01:30</string>

"14.06.2023 07:01:30"

Receiving response in JSON format is supported.

Parameter Default

value

Description

channelid —
Unique identifier of the channel. Can be obtained by

running the Receiving system configuration request.

Necessary parameter

searchTime —
Date and time for which the archive records are to be

found. The time must be specified in the UTC time zone.

Necessary parameter

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

The searchTime parameter supports several date and time recording formats:

• The date can be written with a full ("YYYY" or "2023") or with an abbreviated

year ("YY" or "23").

• Both a period (".") and a hyphen ("-") may be used to separate the number,

month and year in the date.

• Date can be written starting with either the day ("DD.MM.YYYY" or

"14.06.2023") or the year ("YYYY.MM.DD" or "2023.06.14").

• The date and time can be separated by a space (" ") or its code ("%20"), or

by a plus ("+").

Although the response from the server contains a separator "T" between date and

time, this separator is not supported in the request body.

http://127.0.0.1:8080/command?type=findarchive&login=root&password=&channelid=a3785
d7f-9259-456b-a64a-048342f22964&searchTime=14.06.2023+10:10:10

http://127.0.0.1:8080/command?type=findarchive&login=root&password=&channelid=a3785
d7f-9259-456b-a64a-048342f22964&searchTime=14.06.2023+10:10:10&responsetype=json

Published on 10/24/2022

As a response, the server retrieves information about the availability of the archive for the

specified time and the timestamp of the video frame nearest to the specified time.

Example of a response in XML format:

Example of a response in JSON format:

Where:

Receiving the list of intervals with information about the beginning

and end of the archive recording

To get information about the availability of record intervals in the archive for the specified
period, use the request to the archivefragments resource.

Additional request parameters:

<CheckArchiveResult>

<HasArchive>true</HasArchive>

<NearestFrameTimestamp>2023-06-14T10:10:00.0988432Z</NearestFrameTimestamp>

</CheckArchiveResult>

{

 "HasArchive": true,

 "NearestFrameTimestamp": "2023-06-14T10:10:00.0988432Z"

}

Parameter Description

HasArchive Sign of the availability of the archive for the specified time. Possible

values: true — the archive for the specified time exists, false — does

not exist

NearestFrameT
imestamp

Time stamp of the nearest video frame in UTC format. If

HasArchive=false, the parameter will be set to null

Receiving response in JSON format is supported.

Parameter Default

value

Description

channelid —
Unique identifier of the channel. Can be obtained by

running the Receiving system configuration request.

Necessary parameter

fromtime —
Date and time of the beginning of the period for which

the information is requested. The time must be specified

in the UTC time zone. Necessary parameter

totime —
Date and time of the end of the period for which the

information is requested. The time must be specified in

the UTC time zone. Necessary parameter

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

Published on 10/24/2022

Example of a request for data in XML format:

Example of a request for data in JSON format:

As a response, the server will return an array of entries containing the start and end time of

the archive recording, for example, when the recording was made by the motion detector.

Example of a response in XML format:

Example of a response in JSON format:

When specifying the parameters fromtime and totime, the following requirements
must be complied:

• The date must be written with the full year ("2023" but not "23").
• - Only a period (".") can be used as a separator in the date.

• The date format should be DD.MM.YYYY ("14.06.2023").

• - The date and time should be separated by a space (" ") or its code ("%20"),

or by a plus ("+").

Although the response from the server contains a different date format and the "T"

separator between date and time, they are not supported in the request body.

http://127.0.0.1:8080/archivefragments?login=root&password=&channelid=a3785d7f-
9259-456b-a64a-048342f22964&fromtime=14.06.2023+00:00:00&totime=14.06.2023+10:00:00

http://127.0.0.1:8080/archivefragments?login=root&password=&channelid=a3785d7f-
9259-456b-a64a-048342f22964&fromtime=14.06.2023+00:00:00&totime=14.06.2023+10:00:00
&responsetype=json

<ArchiveFragmentsList>

<Fragments>

<ArchiveFragment>

<Id>50b4d1f2-10ea-4511-940c-136217f2c84f</Id>

<FromTime>2023-06-14T02:11:25.880943Z</FromTime>

<ToTime>2023-06-14T09:13:22.7468942Z</ToTime>

</ArchiveFragment>

<ArchiveFragment>

<Id>8c92e69f-2d17-4b39-a3bf-e43e4d93bc71</Id>

<FromTime>2023-06-14T09:20:12.880447Z</FromTime>

<ToTime>2023-06-14T14:09:43.7434942Z</ToTime>

</ArchiveFragment>

</Fragments>

</ArchiveFragmentsList>

{

 "Fragments": [

 {

 "Id": "50b4d1f2-10ea-4511-940c-136217f2c84f ",

 "FromTime": "2023-06-14T02:11:25.880943Z ",

 "ToTime": "2023-06-14T09:13:22.7468942Z "

 },

 {

 "Id": "8c92e69f-2d17-4b39-a3bf-e43e4d93bc71",

Published on 10/24/2022

Where:

Receiving information about the status of channels

To get information about the state of channels and their options, a request to the

command resource with the type getchannelsstates can be used.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

As a response, the server will send information about the status of data streams used by

the active channels.

Example of a response in XML format:

 "FromTime": "2023-06-14T09:20:12.880447Z ",

 "ToTime": "2023-06-14T14:09:43.7434942Z "

 }

]

}

Parameter Description

Id Unique identifier of the archive fragment

FromTime Beginning time of the archive fragment

ToTime End time of the archive fragment

The number of separate fragments of the archive for a given period depends on the

incessancy of the archive recording for the specified channel. If the archive is

maintained continuously, the response may contain only one fragment of the

archive, even if the data was requested for several days.

Receiving response in JSON format is supported.

Parameter Default

value

Description

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/command?type=getchannelsstates&login=root&password=

http://127.0.0.1:8080/command?type=getchannelsstates&login=root&password=&responset
ype=json

The response to the request contains information only about the channels that are

switched on. Information about existing, but switched off channels will not be sent.

<ArrayOfChannelState>

<ChannelState>

Published on 10/24/2022

<Id>a3785d7f-9259-456b-a64a-048342f22964</Id>

<IsRecordingOn>true</IsRecordingOn>

<StreamsStates>

<Stream>

<Type>MainVideo</Type>

<State>NoConnection</State>

</Stream>

<Stream>

<Type>AlternativeVideo</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>MainSound</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>AlternativeSound</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>OutputSound</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>MotionDetection</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>IO</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>ArchiveVideo</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>ArchiveSound</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>SecondAlternativeVideo</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>ThirdAlternativeVideo</Type>

<State>Stopped</State>

</Stream>

<Stream>

<Type>SecondAlternativeSound</Type>

Published on 10/24/2022

Example of a response in JSON format:

<State>Stopped</State>

</Stream>

<Stream>

<Type>ThirdAlternativeSound</Type>

<State>Stopped</State>

</Stream>

</StreamsStates>

<IsAnalogCameraConnected>false</IsAnalogCameraConnected>

</ChannelState>

</ArrayOfChannelState>

[
 {
 "Id": "a3785d7f-9259-456b-a64a-048342f22964",
 "IsRecordingOn": false,
 "StreamsStates":
 [
 {
 "Type": "MainVideo",
 "State": "Active"
 },
 {
 "Type": "AlternativeVideo",
 "State": "Stopped"
 },
 {
 "Type": "MainSound",
 "State": "Active"
 },
 {
 "Type": "AlternativeSound",
 "State": "Stopped"
 },
 {
 "Type": "OutputSound",
 "State": "Stopped"
 },
 {
 "Type": "MotionDetection",
 "State": "Stopped"
 },
 {
 "Type": "IO",
 "State": "Stopped"
 },
 {
 "Type": "ArchiveVideo",
 "State": "Stopped"
 },
 {
 "Type": "ArchiveSound",
 "State": "Stopped"
 },
 {
 "Type": "SecondAlternativeVideo",
 "State": "Stopped"
 },
 {

Published on 10/24/2022

Where:

 "Type": "ThirdAlternativeVideo",
 "State": "Stopped"
 },
 {
 "Type": "SecondAlternativeSound",
 "State": "Stopped"
 },
 {
 "Type": "ThirdAlternativeSound",
 "State": "Stopped"
 },

]
 }
]

Parameter Subparameter Description

Id — Unique identifier of the channel

IsRecordin
gOn

— State of channel archive recording. Possible values: true

- archive recording is enabled, false - disabled

StreamStat
es

 The state of data streams. Each stream has own Type

and State

Type Type of data channel. Possible values:

• MainVideo — video reception, stream Main;
• AlternativeVideo — video reception, stream

Additional 1;
• MainSound — audio reception, stream Main;
• AlternativeSound — audio reception, stream

Additional 1;
• OutputSound — audio output;
• MotionDetection — built-in motion detector;
• IO — digital inputs/outputs;
• ArchiveVideo — archive video;
• ArchiveSound — archive audio;
• SecondAlternativeVideo — video reception,

stream Additional 2;

• ThirdAlternativeVideo — video reception, stream

Additional 3;

• SecondAlternativeSound — audio reception,

stream Additional 2;

• ThirdAlternativeSound — audio reception,

stream Optional 3.
State State of the data channel. Possible values:

• Stopped — the stream is stopped because it is not

required by the system;
• Active — the stream is in the state of receiving

frames and events;

• NoConnection — connection with the device was

broken.
IsAnalogCa
meraConnec

ted

— Sign of the camera type used by the channel. Possible

values: true — the device is connected as an analog

camera, false — as a digital device

Published on 10/24/2022

HTTP interface for receiving events

Along with obtaining information about the current system configuration, the HTTP interface

also lets you to obtain information about the events detected or created by the system.

Such requests can support two structure formats: accessing a resource with and without a

request type.

Accessing a resource without specifying a request type:

Accessing a resource with a request type:

Where:

{Protocol}://{Server}:{Port}/{Resource}?login={Login}&password={Password}&{Paramete
r}={Parameter value}

{Protocol}://{Server}:{Port}/{Resource}?type={Type}login={Login}&password={Password
}&{Parameter}={Parameter value}

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default ports:

8080 for http; 18080 for https

Resource — URI of the server resource to which the request is addressed

Type — Type of request to the resource, if needed

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password —
md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or not

specified in the request

Parameter —
An additional parameter that specifies the request itself or the

answer to it. Depending on the request, it may be possible to

apply multiple additional parameters at the same time

Parameter
value

—
Value of the applied additional parameter

Published on 10/24/2022

Receiving the list of all events registered in the system

For filtering information when making requests for events, type identifiers for events can be

used. Identifiers are static and unchangeable regardless of the system, the server in it or the

version of the installed product.

To get a complete list of event types that exist in the system, request the command

resource with the type getallregisteredevents.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

Example of a response fragmen in XML format:

Example of a response fragment in JSON format:

Some event types are only available for retrieval in real time, so they cannot be retrieved

when queried retrospectively. To determine which retrieval methods are available for the

selected event type, check the AvailabilityModes parameter.

 Available in Eocortex version 2.1 and later

Receiving response in JSON format is supported.

Parameter Default

value

Description

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/command?type=getallregisteredevents&login=root&password=

http://127.0.0.1:8080/command?type=getallregisteredevents&login=root&password=&resp
onsetype=json

<EventInfo>
 <Id>00000000-0000-0000-0000-000000000033</Id>
 <GuiName>Motion</GuiName>
 <AvailabilityModes>
 <HttpEventAvailabilityMode>RealTime</HttpEventAvailabilityMode>
 </AvailabilityModes>
</EventInfo>

{

"Id": "00000000-0000-0000-0000-000000000033",

 "GuiName": "Motion",

 "AvailabilityModes": [

 "RealTime"

]

}

http://127.0.0.1:8080/command?type=getallregisteredevents&login=root&password=&responsetype=json
http://127.0.0.1:8080/command?type=getallregisteredevents&login=root&password=&responsetype=json

Published on 10/24/2022

This parameter can have the following values:

• RealTime — events of this type are available for retrieval from the real-time stream.

• SpecialArchive — events of this type are available for retrieval from the archive.

Example of an event available for retrieval both in real time and from the archive:

Receiving real-time events

Events can be retrieved in real time as a continuous ("endless") HTTP connection.

When reading the response received, keep in mind that the information is

transmitted using the following mechanisms:

• Chunked transfer encoding to transfer dynamically formed response

body. Due to "infinity" of the request it is impossible to predict the exact size

of the response body, therefore the response is transmitted with the

"Transfer-encoded: chunked" header.

• Newline delimited JSON streaming to segregate transferred objects.

Separation of objects in this mechanism is performed by placing next object

to a new line instead of using symbolic delimiters.

To get an "endless" stream of system events, use a request to the event resource.

Additional request parameters:

Example of a request for data in JSON format:

<EventInfo>
 <Id>427f1cc3-2c2f-4f50-8865-56ae99c3610d</Id>
 <GuiName>Face recognized (Face Recognition module)</GuiName>
 <AvailabilityModes>
 <HttpEventAvailabilityMode>RealTime</HttpEventAvailabilityMode>
 <HttpEventAvailabilityMode>SpecialArchive</HttpEventAvailabilityMode>
 </AvailabilityModes>
</EventInfo>

 Available in Eocortex version 2.1 and later

Receiving response in JSON format is supported.

Parameter Default

value

Description

channelid —
Unique identifier of the channel. Can be obtained by

running the Receiving system configuration request.

Optional parameter

filter —
Unique identifier of the event. Can be obtained by

running the request Obtaining the list of all events

registered in the system. Optional parameter

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

mode —
Parameter to force the server to generate debug

messages when applying the demo value. Optional

parameter

http://127.0.0.1:8080/event?login=root&password=&responsetype=json

Published on 10/24/2022

Example of a response fragment in JSON format:

The filter and channelid request parameters are used when the event of only a specific

type and/or from a specific channel is to be retrieved. Both parameters can be used in the

same request, but each parameter can only have one value at the same time.

Example of a valid request:

Example of an invalid request:

If the parameter mode=demo is added to the request, the system will start generating

virtual events with the "Recognized license plate" event type. Such events are not saved to

the system event log, not associated with any camera and do not contain any actual

information. This parameter may be helpful for studying, testing and debugging the

mechanisms of receiving and reading events.

Example of virtual events request in JSON format:

Example of a virtual event in JSON format:

{
 "EventId" : "eb0bb455-b85f-4ac4-851f-f30a11797579",
 "Timestamp" : "19.10.2022 09:58:55",
 "BinaryTimestamp" : "5249703721781162729",
 "ZonedTimestamp" : "19.10.2022 09:58:55.377 +05:00",
 "EventDescription" : "Motion start",
 "IsAlarmEvent" : "False",
 "ChannelId" : "e0391a80-c921-4ffc-9a69-107fcf28e34e",
 "ChannelName" : "Camera 3",
 "Comment" : "",
 "EventType" : "Info",
 "InitiatorName" : "System"
}
{
 "EventId" : "e4b1f78d-35d6-4092-9fd8-72e66de82e01",
 "Timestamp" : "19.10.2022 09:59:11",
 "BinaryTimestamp" : "5249703721937844932",
 "ZonedTimestamp" : "19.10.2022 09:59:11.045 +05:00",
 "EventDescription" : "Motion stop",
 "IsAlarmEvent" : "False",
 "ChannelId" : "e0391a80-c921-4ffc-9a69-107fcf28e34e",
 "ChannelName" : "Camera 3",
 "Comment" : "",
 "EventType" : "Info",
 "InitiatorName" : "System"
}

http://127.0.0.1:8080/event?login=root&password=&channelid=e0391a80-c921-4ffc-9a69-
107fcf28e34e&filter=00000000-0000-0000-0000-000000000033&responsetype=json

http://127.0.0.1:8080/event?login=root&password=&channelid=e0391a80-c921-4ffc-9a69-
107fcf28e34e&filter=00000000-0000-0000-0000-000000000033,e4b1f78d-35d6-4092-9fd8-
72e66de82e01&responsetype=json

http://127.0.0.1:8080/event?login=root&password=&mode=demo&responsetype=json

{
 "EventId" : "c9d6d086-c965-4cf8-aef6-85b3894e3a4a",
 "Timestamp" : "19.10.2022 10:24:02",
 "BinaryTimestamp" : "5249703736847974593",

Published on 10/24/2022

In case of complete or temporary absence of events fitting the request sent, the system will

return KeepAlive messages in response to keep the established connection alive. A

message of this type will be displayed in the stream even if a filter by event type was set in

the request.

Example of KeepAlive message in JSON format:

The results of some analytics modules contain the coordinates of an object detected by the

system on the frame (for example, coordinates of a face for Face Recognition). When

requesting events of this type, the response body includes relative coordinates of the object

boundaries in the form of the position on the frame of the upper left point of the boundary

(Top, Left), as well as its width and height (Width, Height).

The coordinates are defined from the upper left corner of the camera frame.

 "ZonedTimestamp" : "19.10.2022 10:24:02.058 +05:00",
 "EventDescription" : "Recognized license plate",
 "IsAlarmEvent" : "False",
 "ChannelId" : "00000000-0000-0000-0000-000000000000",
 "ChannelName" : "",
 "Comment" : "",
 "EventType" : "Info",
 "InitiatorName" : "System",
 "IsIdentified" : "False",
 "plateText" : "",
 "Speed" : "0",
 "Reliability" : "0",
 "Left" : "0",
 "Top" : "0",
 "lastName" : "",
 "firstName" : "",
 "patronymic" : "",
 "carbrand" : "",
 "carcolor" : "",
 "additionalInfo" : "",
 "groups" : "",
 "direction" : ["Unknown"],
 "ExternalId" : "",
 "ExternalOwnerId" : "",
 "Width" : "0",
 "Height" : "0",
 "Numberplate" : ""
}

{
 "EventId" : "e9e7a69c-7ee2-3fee-a530-9f8a88124fcc",
 "Timestamp" : "19.10.2022 09:59:19",
 "BinaryTimestamp" : "5249703722021050198",
 "ZonedTimestamp" : "19.10.2022 09:59:19.366 +05:00",
 "EventDescription" : "",
 "IsAlarmEvent" : "False",
 "ChannelId" : "00000000-0000-0000-0000-000000000000",
 "ChannelName" : "",
 "Comment" : "KeepAlive",
 "EventType" : "Info",
 "InitiatorName" : "System"
}

Published on 10/24/2022

Example of a response with object coordinates:

{
 "InitiatorName" : "ExternalEvent",
 "EventId" : "427f1cc3-2c2f-4f50-8865-56ae99c3610d",
 "EventType" : "Info",
 "IsAlarmEvent" : "False",
 "ChannelId" : "cb07636a-ec9f-4555-a1eb-7b3485e1285e",
 "ChannelName" : "Camera 1",
 "Comment" : "",
 "Timestamp" : "21.04.2021 04:33:19.555",
 "BinaryTimestamp" : "5249231782422939709",
 "ZonedTimestamp" : "21.04.2021 04:33:19.555 +05:00",
 "EventDescription" : "Face recognized (Face Recognition module)",
 "FaceId" : "5821fc2b-c9d2-4d72-aa85-6ffe114b7fec",
 "IsIdentified" : "False",
 "lastName" : "",
 "firstName" : "",
 "patronymic" : "",
 "groups" : "",
 "additionalInfo" : "",
 "Left" : "0,0277343735098839",
 "Top" : "0,0372685134410858",
 "Width" : "0,25234375",
 "Height" : "0,448611122369766",
 "Similarity" : "0",
 "Age" : "27",
 "Gender" : "2",
 "ExternalId" : "",
 "TemperatureDegreesCelsius" : "0",
 "ImageBytes" : "",
 "Emotion" : ["Neutral"],
 "EmotionConfidence" : "0,729602694511414",
 "IsFaceCovered" : "False",
 "IsRotated" : "False",
 "TrajectoryId" : "9351b23f-813f-42a4-b1ba-011dbbcce99b"
}

For sorting by time of event occurrence, each object has a timestamp provided in the

response body in three formats:

• Timestamp - server date and time in UTC format without specifying the server's

time zone;

• ZonedTimestamp - date and time of the server in UTC format with specifying the

server's time zone;

• BinaryTimestamp - date and time of the server in binary representation

(DateTime.ToBinary method).

Binary representation of the timestamp has the greatest accuracy and ease of

integration, but complicates reading of the timestamp for a person. To convert the

binary representation of date and time to UTC format, use the

DateTime.FromBinary method.

Receiving events of the Event log

Option of receiving events from the archive allows to create an own event log using the

received data.

 Available in Eocortex version 4.0 and later

Receiving response in JSON format is supported.

Published on 10/24/2022

The response to the request will contain all types of events available in the Events

Log, and also the details of the Face Recognition module event - Face Recognized.

A request consists of a URL and a request body sent in JSON format. For successful

execution it is necessary that the sender application knows how to handle such

requests.

To get a list of events from the archive, use a GET request to the archive_events

resource.

Additional URL parameters:

A basic request lets you access a URL without filling in the body of the request.

Example of URL:

As a response to this request, a complete list of system events will be sent without filtering.

To clarify the request, add additional parameters to the request by specifying them in the
request body in JSON format.

If a parameter is not specified in the request body, the default value will be applied

when executing the request.

Additional request body parameters:

Parameter Default

value

Description

shortevent false
Parameter that forces the server to send a shortened

version of the event message

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/archive_events?login=root&password=

Parameter Type Default

value

Description

StartTimeU
tc

string
Minimum

possible time
Search start time in the format of dd.MM.yyyy

HH:mm:ss.fff (UTC)

EndTimeUtc string
Maximum

possible time
Search end time in the format of dd.MM.yyyy

HH:mm:ss.fff (UTC)

EventCateg
ories

number
All

categories

Categories of events. Available options:

0 — information

1 — alarm

2 — error

EventIniti
atorTypes

number
All types of

event
initiators

Types of event initiators. Available options:

0 — System

1 — User

2 — Scenario

3 — User task

4 — Scheduled task

8 — External module

Published on 10/24/2022

Sending a request with incorrect values of the parameters below will result in a

response with error code 400 (Bad Request):

• StartTimeUtc

• EndTimeUtc

• IsSearchFromBegin

• SearchLimitCount

Example of request body with additional parameters in JSON format:

As a response, the server will send information about the event in one of the following

formats, depending on the additional parameters of the request and the properties of the

event itself.

Example of an event without additional information:

Example of an event with additional information:

EventIniti
ators

string All users List of system user identifiers (Guid)

EventIds string All events List of event identifiers

ChannelIds string
All cameras
and empty

Guid

List of camera identifiers

To retrieve events that are not associated with

a camera, send an empty Guid (00000000-

0000-0000-0000-000000000000)

IsSearchFr
omBegin

boolean false
Search for events in the archive from the

beginning of the time interval

SearchLimi
tCount

number 5000
Maximum number of entries to retrieve

{
 "startTimeUtc": "17.04.2023 09:54:31.775",
 "endTimeUtc": "17.04.2023 10:54:31.775",
 "cameraIds": ["00000000-0000-0000-0000-000000000000"],
 "eventCategories": [0,1,2],
 "eventInitiatorTypes":[0,2,8,4,1,3],
 "eventInitiators":["2aa0118f-8849-499c-b0df-6b071d95ee66"],
 "isSearchFromBegin":false,
 "searchLimitCount":200
}

{
 "ChannelId": "00000000-0000-0000-0000-000000000000",
 "ChannelName": "",
 "Event": null,
 "EventCategory": 0,
 "EventComment": " Recording speed: 1,59 MB/s. Subsystem to work with archive.",
 "EventDescription": null,
 "EventId": "00000000-0000-0000-0000-000000000010",
 "EventInitiatorType": 0,
 "Timestamp": "2022-10-03T08:45:20.9497012Z"
}

{
 "ChannelId": "effbcd69-9f89-4301-87bf-2663bff0a44d",
 "ChannelName": "Camera 9",
 "Event": {
 "AdditionalInfo": "Helen from the management team",

Published on 10/24/2022

If the parameter shortevent=true is specified in the request URL, the server will return the
shortened event text.

Example of a shortened event text request:

http://127.0.0.1:8080/archive_events?login=root&password=&shortevent=true

Example of a response with shortened event text:

The following parameters can be found in the event text sent in the body of the response

sent back by the server:

 "Age": 24,
 "Emotion": 2,
 "EventName": "FaceDetectedNotifyEvent",
 "EventTime": "2022-10-03T08:23:40.8019552Z",
 "FaceId": "fe705eb2-4f76-47eb-92eb-178c0ccf7077",
 "FaceImageBase64": "base64 jpeg image",
 "FirstName": "Helen",
 "Gender": 1,
 "Groups": ["White list", "Management"],
 "IsIdentified": true,
 "LastName": "Smith",
 "Patronymic": "",
 "Height": 0.152734375,
 "Left": 0.56064453125,
 "Top": 0.3083984375,
 "Width": 0.11455078125,
 "Similarity": 0.9900000095367432,
 },
 "EventCategory": 1,
 "EventComment": "Helen Smith",
 "EventDescription": "Face recognized (Face recognition module)",
 "EventId": "427f1cc3-2c2f-4f50-8865-56ae99c3610d",
 "EventInitiatorType": 0,
 "Timestamp": "2022-10-03T08:23:40.8019552Z"
}

{
 "EventCategory": 1,
 "EventId": "427f1cc3-2c2f-4f50-8865-56ae99c3610d",
 "Timestamp": "2022-10-03T08:23:40.8019552Z"
}

Parameter Type Description

ChannelId Guid Camera identifier

ChannelName string Camera name

EventId Guid Event type identifier

EventCategory number Event category:

0 — information

1 — alarm

2 — error

EventComment string Commentary from the event

EventDescription string Event description

EventInitiatorType number Event initiator type:

0 — System

1 — User

2 — Scenario

Published on 10/24/2022

To obtain a list of event types registered in the system, which can be sent in response to a

request to the archive_events resource, a request to the archive_event_types resource

is used.

Querying this resource does not involve sending an additional request body in JSON

format.

Additional URL parameters:

Request sample for retrieving data in JSON format:

http://127.0.0.1:8080/archive_event_types?login=root&password=&responsetype=json

As a response to this request, the server will send the list of events in JSON format as

follows:

Receiving a list of special archive events

3 — User task

4 — Scheduled task

8 — External module

Timestamp string Time of event (UTC)

Event For Unified
events – null

For events of
analytic
modules –

information
about analysis
results (if

exists)

Attached entry with information about the event

Parameter Default

value

Description

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

[
{

 "Id": "7da43299-9c0d-4043-9183-e947b5f6bdca",
 "Name": "Loud sound"
 }
]

 Available in Eocortex version 2.1 and later

Receiving response in JSON format is supported.

Published on 10/24/2022

Another way to get events from the archive is a batch unloading of data in the form of a list

of events recorded by the system over a specified period of time. For this purpose, a query

to the specialarchiveevents resource can be used.

When reading the received response, take into account that the information is

transferred using Newline delimited JSON streaming mechanism. Separation of

objects in this mechanism is performed by placing the next object on a new line

instead of using symbolic delimiters.

Retrieval of events from the archive is available in the form of a list of events

recorded by the system during a specified time. The maximum number of events

per request is 1000. To retrieve further events, it is necessary to repeat the search

from the time of the last received event.

Additional request parameters:

Example of a request for data in JSON format:

Example of a response in JSON format:

Parameter Default

value

Description

starttime —

Date and time of the beginning of the event search

interval. Must be specified according to the UTC time

zone in the format DD-MM-YYYY+hh:mm:ss. Necessary

parameter

endtime —
Date and time of the end of the event search interval.

Must be specified according to the UTC time zone in the

format DD-MM-YYYY+hh:mm:ss . Necessary parameter

eventid —
Unique identifier of the event type. Can be obtained by

running the query Obtaining the list of all events

registered in the system. Necessary parameter

channelid —
Unique identifier of the channel. Can be obtained by

running the Receiving system configuration request.

Optional parameter

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/specialarchiveevents?login=root&password=&starttime=19.10.202
2+10:50:00&endtime=19.10.2022+11:00:00&eventid=b0536c2f-2f09-4969-bf1a-
9fb847b87d21&responsetype=json

{

 "EventId" : "b0536c2f-2f09-4969-bf1a-9fb847b87d21",

 "Timestamp" : "19.10.2022 10:59:56",

 "BinaryTimestamp" : "5249703758396001539",

 "ZonedTimestamp" : "19.10.2022 10:59:56.861 +05:00",

 "EventDescription" : "Tracking event",

 "IsAlarmEvent" : "True",

 "ChannelId" : "e0391a80-c921-4ffc-9a69-107fcf28e34e",

 "ChannelName" : "Camera 3",

 "Comment" : "Movement in the zone",

 "EventType" : "Alarm",

 "InitiatorName" : "ExternalEvent",

 "alertType" : ["MovingInZone"],

Published on 10/24/2022

Receiving the list of recognized license plates from the archive

The License Plate Recognition module has an additional type of query that makes it possible

to get the list of license plates recognized during a specified time period in a shorter format

than with the event or specialarchiveevents resources.

To get the list of recognized license plates in shortened form, the query to the

autovprs_export resource can be used.

Additional request parameters:

The answer from the server for this request will always be in JSON format.

Example of a request for data in JSON format:

http://127.0.0.1:8080/autovprs_export?login=root&password=&channelid=f2e18694-3f58-
4128-a48e-37dd184b109b&startTime=2022-10-20-16-40-00-000&finishTime=2022-10-20-17-
00-00-000

Example of a response in JSON format:

 "AlertTime" : "638017739968613635",

 "TrajectoryId" : "57f88149-9976-4953-9b4c-3921c689b82d",

 "Left" : "0,0032153846710991974",

 "Top" : "0,5185692308091415",

 "Width" : "0,05787692314846298",

 "Height" : "0,13713846175798144"

}

Receiving response in JSON format is supported.

Parameter Default

value

Description

starttime —
The start time of the event search interval. Specified by

server time zone in the format YYYY-MM-DD-hh-mm-ss-

fff. Necessary parameter

finishtime —
The end time of the event search interval. Specified by

server time zone in the format YYYY-MM-DD-hh-mm-ss-

fff. Necessary parameter

channelid —
Unique identifier of the channel. Can be obtained by

running the Receiving system configuration request.

Necessary parameter

[
{
 "TimeUtc" : "20.10.2022 11:48:11.707",
 "Numberplate" : "12OP90B",
 "LastName" : "",
 "FirstName" : "",
 "PatronymicName" : "",
 "Group" : "",
 "Direction" : "Unknown"
},
{
 "TimeUtc" : "20.10.2022 11:48:35.097",

Published on 10/24/2022

When sending a request and reading a response it is necessary to take into account

the peculiarities of the time display.

The request body shall contain the time interval in the server time zone in the format

YYYY-MM-DD-hh-mm-ss-ms.

In the response body, the license plate recognition time is displayed in the UTC(+0)

time zone in the format DD-MM-YYYYY hh-mm-ss.

Thus, if the request is sent to the server with the UTC+3 time zone to obtain the list

of recognized license plate numbers within the interval of 15:00:00 - 15:10:00, the

time in the request body shall be displayed as per the required interval, while in the

response body the corresponding car license numbers will be displayed within the

12:00:00 - 12:10:00 range.

 "Numberplate" : "CXH1220",
 "LastName" : "",
 "FirstName" : "",
 "PatronymicName" : "",
 "Group" : "",
 "Direction" : "Unknown"
}

]

Published on 10/24/2022

HTTP interface for executing commands by Eocortex
server

The Eocortex HTTP-interface lets you not only get information about the system, but also

manage some of its components by executing the CGI requests described below.

Such requests, with one exception, have the following format:

Where:

For most of the requests, the server sends the same type of response about the status of the

request. If the request was successfully executed, the response body will contain only the OK

or Success status. Otherwise, the response body will contain information about an execution

error.

Setting archive recording on/off for a channel

To manually switch the archive recording state for the channel, use the recording type of

request.

Additional request parameters:

{Protocol}://{Server}:{Port}/command?type={Type}&login={Login}&password={Password}&
{Parameter}={Parameter value}

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default

ports: 8080 for http; 18080 for https

Type — Type of request to the resource, if needed

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password —
md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or

not specified in the request

Parameter —

An additional parameter that specifies the request itself or

the answer to it. Depending on the request, it may be

possible to apply multiple additional parameters at the same

time

Parameter
value

—
Value of the applied additional parameter

Parameter Default

value

Description

channelid —
Unique identifier of the channel. Can be obtained by

running the Receiving system configuration request.

Necessary parameter

mode —
Archive recording mode. Possible values: start — start

recording, stop — stop recording. Necessary parameter

Published on 10/24/2022

Example of a request to turn on a recording lasting 15 minutes:

Example of a request to turn off a recording:

Setting date and time on Eocortex server

To set the time forcibly on the device where the Eocortex server is installed, use the settime

type of request.

Additional request parameters:

Example of a request:

Setting a screen profile on the client

To send a command to the Eocortex Client connected to the server to change the screen

profile, use the setprofile type of request.

Additional request parameters:

interval —
Recording time in minutes. Necessary parameter when

mode=start

http://127.0.0.1:8080/command?type=recording&channelid=20d9884f-ae8c-45d3-ac5a-
505ec258f01b&login=root&password=&mode=start&interval=15

http://127.0.0.1:8080/command?type=recording&channelid=20d9884f-ae8c-45d3-ac5a-
505ec258f01b&login=root&password=&mode=stop

This request has no effect on channels for which archive recording is disabled or is

already running continuously.

Parameter Default

value

Description

time —
Date and time in the UTC time zone. Necessary

parameter

The time parameter supports several date and time recording formats:

• The date can be written either with a full year ("YYYY" or "2023") or with an

abbreviated year ("YY" or "23").

• Both a period (".") and a hyphen ("-") may be used to distinguish the day,

month, and year in the date.

• Date can be written starting with either the day ("DD.MM.YYYY" or

"14.06.2023") or the year ("YYYY.MM.DD" or "2023.06.14").

• The date and time can be separated by a space (" ") or its code ("%20"), or

by a plus ("+").

http://127.0.0.1:8080/command?type=settime&login=root&password=&time=14.06.2023+08:
11:00

Only server-based screen profiles can be set with this request. Profiles (views)

created directly on the client are not supported.

Parameter Default

value

Description

clientip — IP address of the device running the Eocortex client

application. Necessary parameter

Published on 10/24/2022

Example of a request:

Setting a grid on the client

To change the camera grid within the current screen profile on the selected Eocortex client,

use the setgrid type of request.

Additional request parameters:

Example of a request:

Setting a channel to the grid cell

To place a new channel into a grid cell of the active screen profile, use the setcell type of

request.

monitor — Number of the monitor in the current configuration of the

client application. Starts from 0. Necessary parameter

profileid — Identifier of the screen profile to be set. The list of available

profiles can be got with the request for Receiving the list of
screen profiles

The clientip value must contain the actual address of the Eocortex client. Using

localhost (127.0.0.1) will cause an error even when accessing a client installed

directly on the server.

http://127.0.0.1:8080/command?type=setprofile&login=root&password=&clientip=192.168
.1.2&monitor=0&profile=13851f3d-c7d3-4ec6-b0ff-2d66873bf118

The request lets changing grids only for those screen profiles that were created

directly on the client device. Changing server profiles is not supported.

Any changes to the grid will be saved automatically within the current screen

profile. A new profile will not be created.

Parameter Default

value

Description

clientip — IP address of the device running the Eocortex client

application. Necessary parameter

monitor — Number of the monitor in the current configuration of the

client application. Starts from 0. Necessary parameter

cells — The name of the grid to be set. Names of the available grids

can be obtained using the Receiving the list of grids request

The clientip value must contain the actual address of the Eocortex client. Using

localhost (127.0.0.1) will cause an error even when accessing a client installed

directly on the server.

http://127.0.0.1:8080/command?type=setgrid&login=root&password=&clientip=192.168.1.
2&monitor=0&cells=25

The request lets changing grids only for those screen profiles that were created

directly on the client device. Changing server profiles is not supported.

Any changes to the grid will be saved automatically within the current screen

profile. A new profile will not be created.

Published on 10/24/2022

Additional request parameters:

Example of a request:

Removing a channel from the grid cell

To delete a channel from one cell of the camera grid within the current screen profile, use the
clearcell type of request.

Additional request parameters:

Parameter Default

value

Description

clientip — IP address of the device running the Eocortex client

application. Necessary parameter

monitor — Number of the monitor in the current configuration of the

client application. Starts from 0. Necessary parameter

cell — Cell number. Starts from 0. Necessary parameter

channelid — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration request. Necessary

parameter

mode realtime Channel playback mode in the cell. Possible values:

realtime - playback of real time stream, archive - playback

of archive

starttime Moment of
receiving

the request

Initial point of the archive playback. Applies only when

mode=archive

speed 1 Archive playback speed. Applies only when mode=archive.

Possible values: 0.1; 0.2; 0.5; 1; 2; 5; 10; 20; 60; 120

The clientip value must contain the actual address of the Eocortex client. Using

localhost (127.0.0.1) will cause an error even when accessing a client installed

directly on the server.

The time parameter supports several date and time recording formats:

• The date can be written either with a full year ("YYYY" or "2023") or with an

abbreviated year ("YY" or "23").

• Both a period (".") and a hyphen ("-") may be used to distinguish the day,

month, and year in the date.

• Date can be written starting with either the day ("DD.MM.YYYY" or

"14.06.2023") or the year ("YYYY.MM.DD" or "2023.06.14").

• The date and time can be separated by a space (" ") or its code ("%20"), or

by a plus ("+").

http://127.0.0.1:8080/command?type=setcell&login=root&password=&clientip=192.168.1.
2&monitor=0&cell=4&channelid=20d9884f-ae8c-45d3-ac5a-
505ec258f01b&mode=archive&starttime=14.09.2023+10:10:00&speed=2

The request lets changing grids only for those screen profiles that were created

directly on the client device. Changing server profiles is not supported.

Any changes to the grid will be saved automatically within the current screen

profile. A new profile will not be created.

Parameter Default

value

Description

Published on 10/24/2022

The clientip value must contain the actual address of the Eocortex client. Using

localhost (127.0.0.1) will cause an error even when accessing a client installed

directly on the server.

Example of a request:

Clearing the entire grid

To remove all used channels from the cells of the camera grid within the current screen profile,

use the cleargrid type of request.

Additional request parameters:

Example of a request:

Setting channel to the guard mode

 Available in Eocortex version 2.1 and later

To change the state of the guard mode for a channel, use the setguardian type of request.

Additional request parameters:

clientip — IP address of the device running the Eocortex client

application. Necessary parameter

monitor — Number of the monitor in the current configuration of the

client application. Starts from 0. Necessary parameter

cell — Cell number. Starts from 0. Necessary parameter

http://127.0.0.1:8080/command?type=cleargrid&login=root&password=&clientip=192.168.
1.2&monitor=0&cell=4

The request lets changing grids only for those screen profiles that were created

directly on the client device. Changing server profiles is not supported.

Any changes to the grid will be saved automatically within the current screen

profile. A new profile will not be created.

Parameter Default

value

Description

clientip — IP address of the device running the Eocortex client

application. Necessary parameter

monitor — Number of the monitor in the current configuration of the

client application. Starts from 0. Necessary parameter

The clientip value must contain the actual address of the Eocortex client. Using

localhost (127.0.0.1) will cause an error even when accessing a client installed

directly on the server.

http://127.0.0.1:8080/command?type=cleargrid&login=root&password=&clientip=192.168.
1.2&monitor=0

Parameter Default

value

Description

clientip — IP address of the device running the Eocortex client

application. Necessary parameter

monitor — Number of the monitor in the current configuration of the

client application. Starts from 0. Necessary parameter

Published on 10/24/2022

Example of a request:

Sending audio to the camera

 Available in Eocortex version 2.1 and later

Eocortex supports the ability to send audio streams for playback through the camera

speaker. For this purpose, use POST-request to the sendsound resource. The URL of the

request specifies the target parameters, the body of the request contains the audio data.

Additional URL parameters:

Example of URL:

channelid — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration request. Necessary

parameter

isguardmod
eenabled

— Switching the state of the armed mode. Possible values:

true — activate the guard mode, false — deactivate.

Necessary parameter

http://127.0.0.1:8080/command?type=setguardian&login=root&password=&clientip=192.16
8.1.2&monitor=0&channelid=20d9884f-ae8c-45d3-ac5a-
505ec258f01b&isguardianmodeenabled=true

This request is primarily designed for use in third-party applications that act as

clients. Additional libraries may be required to execute this request.

A request consists of a URL and a request body sent in JSON format. For successful

execution it is necessary that the sender application knows how to handle such

requests.

Parameter Default

value

Description

channelid — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration request. Necessary

parameter

clientid — Unique identifier of the transmission session

The value of the clientid parameter must be the GUID generated by the

application that acts as the client.

http://127.0.0.1:8080/sendsound?login=root&password=&channelid=66abc0c4-d4b7-4d71-
8ed1-e7beadf0dc46&clientid=66abc0c4-d4b7-4d71-8ed1-e7beadf0dc46

Published on 10/24/2022

In addition to the URL parameters listed above, the POST request must also contain the

ContentType = "multipart/form-data;" header to specify the type of data transmitted in

the body of the request.

Additional Information:

• The transmitted data must meet certain requirements. It is recommended to use third-

party libraries (for example, NAudio: https://github.com/naudio/NAudio) to form

audio data portion (audio coding), setting the following parameters during coding:

Samplesrate=8000; Bitspersample=16; Number of channels = 1.

• The request is not permanently active. Data transfer starts only after the server

receives a corresponding request from the client application.

• The request is not continuous. Within one request from the server, one portion of audio

data is transmitted to the camera, after which the request will be considered as

fulfilled.

• A transmission session can consist of several requests. A transmission session is a

series of requests from a specific client device to a specific camera. It is allowed to use

the same clientid within one transmission session to reduce server load.

• - Each transmission session must have a unique clientid. GUID generation for the

clientid must be carried out by the application acting as the client.

Generating an event from an external system

 Available in Eocortex version 2.1 and later

To create an event in the system log with the Event from external system type, use the

generateexternalevent type of request.

Additional request parameters:

Example of a request:

Parameter Default

value

Description

channelid — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration request. Necessary

parameter

systemname — Name of the external system

informatio
n

— String with information about the event

eventcode — Numerical code of the event

This request is primarily designed to provide the option of basic integration with any

third-party system not supported by Eocortex, including your own products. The

values of the systemname, information, and eventcode parameters can be any.

http://127.0.0.1:8080/command?type=generateexternalevent&login=root&password=&
channelid=20d9884f-ae8c-45d3-ac5a-
505ec258f01b&systemname=testsystem&information=alarm&eventcode=5

https://github.com/naudio/NAudio

Published on 10/24/2022

In the Event Log of the Eocortex Client application, this event will look as follows:

Also, these events can be assigned to trigger actions in tasks (via the Eocortex Configurator
application).

Published on 10/24/2022

HTTP interface for operating PTZ features

In addition to the ability to control Eocortex components, the HTTP interface also lets you

receive information and send control commands to PTZ devices connected to the system.

Such requests in general have the following format:

Where:

For requests containing commands to control the PTZ capabilities of the device, the server

returns the single-type response about the results of the attempt to transmit the request to

the device. If the request was successfully transmitted, the response body will contain only

the OK status. Otherwise the response body will contain information about a transmission

error.

{Protocol}://{Server}:{Port}/ptz?command={Type}&login={Login}&password={Password}&c
hannelid={Channel}&{Parameter}={Parameter value}

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default

ports: 8080 for http; 18080 for https

Type — Type of request to the resource, if needed

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password —
md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or

not specified in the request

Channel — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration request

Parameter —

An additional parameter that specifies the request itself or

the answer to it. Depending on the request, it may be

possible to apply multiple additional parameters at the same

time

Parameter
value

—
Value of the applied additional parameter

In comparison to the Eocortex component control commands, the commands listed

below are sent via server to the PTZ device. The possibility and accuracy of their

execution depends on the device and its integration in the Eocortex.

Published on 10/24/2022

Getting information about PTZ capabilities of the device

To get information about the PTZ control options supported by the system, use the

getcapabilities type of request.

Additional request parameters:

Example of a request for data in XML format:

Example of a request for data in JSON format:

As a response, the server will send a list of PTZ features supported by the system,

specifying through the parameter values those features that are supported by the device

itself.

Example of a response in XML format:

Receiving response in JSON format is supported.

Parameter Default

value

Description

responsetype xml
Format of the returned data representation. If not

specified in the request, the default value is used.

Optional parameter. Possible values: xml, json

http://127.0.0.1:8080/ptz?command=getcapabilities&login=root&password=&channelid=20
d9884f-ae8c-45d3-ac5a-505ec258f01b

http://127.0.0.1:8080/ptz?command=getcapabilities&channelid=20d9884f-ae8c-45d3-
ac5a-505ec258f01b&login=root&password=&responsetype=json

<CameraCapabilities>

<PtzCapabilities>

<HomePositionSupports>true</HomePositionSupports>

<MoveToSupports>true</MoveToSupports>

<AreaZoomSupports>true</AreaZoomSupports>

<ZoomSupports>true</ZoomSupports>

<ContiniousZoomSupports>true</ContiniousZoomSupports>

<AbsoluteZoomSupports>false</AbsoluteZoomSupports>

<MaxMinZoomSupports>false</MaxMinZoomSupports>

<AutoFocusSupports>true</AutoFocusSupports>

<ManualFocusSupports>true</ManualFocusSupports>

<ContiniousFocusSupports>true</ContiniousFocusSupports>

<AutoIrisSupports>false</AutoIrisSupports>

<ManualIrisSupports>false</ManualIrisSupports>

<InfraredLightSupports>true</InfraredLightSupports>

<WipersControlSupports>true</WipersControlSupports>

<WasherControlSupports>true</WasherControlSupports>

<SupportedStepMoveDirections>None</SupportedStepMoveDirections>

<SupportedContiniousMoveDirections>Any</SupportedContiniousMoveDirections>

<SetRelativePositionSupports>false</SetRelativePositionSupports>

<SetAbsolutePositionSupports>false</SetAbsolutePositionSupports>

<GetAbsolutePositionSupports>false</GetAbsolutePositionSupports>

<BlackWhiteModeSupports>false</BlackWhiteModeSupports>

Published on 10/24/2022

Example of a response in JSON format:

Where:

<NightModeSupports>false</NightModeSupports>

</PtzCapabilities>

<Resolution>

<Width>1920</Width>

<Height>1080</Height>

</Resolution>

</CameraCapabilities>

{
 "PtzCapabilities": {
 "HomePositionSupports": true,
 "MoveToSupports": true,
 "AreaZoomSupports": true,
 "ZoomSupports": true,
 "ContiniousZoomSupports": true,
 "AbsoluteZoomSupports": false,
 "MaxMinZoomSupports": false,
 "AutoFocusSupports": true,
 "ManualFocusSupports": true,
 "ContiniousFocusSupports": true,
 "AutoIrisSupports": false,
 "ManualIrisSupports": false,
 "InfraredLightSupports": true,
 "WipersControlSupports": true,
 "WasherControlSupports": true,
 "SupportedStepMoveDirections": "0",
 "SupportedContiniousMoveDirections": "255",
 "SetRelativePositionSupports": false,
 "SetAbsolutePositionSupports": false,
 "GetAbsolutePositionSupports": false,
 "BlackWhiteModeSupports": false,
 "NightModeSupports": false
 },
 "Resolution": {
 "Width": 1920,
 "Height": 1080
 }
}

Parameter Description

HomePositionS
upports

Support for returning the camera to the home position

MoveToSupport
s

Support for centering (moving the camera) on a set point

AreaZoomSuppo
rts

Support for zooming in on the selected frame area

ZoomSupports Support for "step-by-step" (one-time) zoom level change

ContiniousZoo
mSupports

Support for "continuous" (performed until forced termination) zoom

level change

AbsoluteZoomS
upports

Support for absolute zoom

MaxMinZoomSup
ports

Support for switching to maximum or minimum zoom level

Published on 10/24/2022

Getting device presets

To get a list of preset positions of the camera, use the getpresets type of request.

Additional request parameters:

AutoFocusSupp
orts

Support for automatic focus

ManualFocusSu
pports

Support for manual focus control

ContiniousFoc
usSupports

Support for "tracking" focus

ManualIrisSup
ports

Support for manual iris control

InfraredLight
Supports

Support for infrared illumination control

WipersControl
Supports

Support for mechanical wiper control

WasherControl
Supports

Support for washer control

SupportedStep
MoveDirection

s

A mask describing the available directions for "step-by-step" movement

SupportedCont
iniousMoveDir

ections

A mask describing the available directions for "continuous" movement

SetRelativePo
sitionSupport

s

Support for setting the position relative to the current position of the

device

SetAbsolutePo
sitionSupport

s

Support for the ability to set the absolute position of the device

GetAbsolutePo
sitionSupport

s

Support for the ability to get information about the current absolute

position of the camera

BlackWhiteMod
eSupports

Support for switching the device to monochrome mode

NightModeSupp
orts

Support for switching the device to "night" mode

Resolution Current resolution of the main stream frame, where:

• Width – ширина кадра.

• Height – высота кадра.

For most PTZ capabilities there are only two possible values: true, which means that

the capability is supported, and false, which means the opposite. The exceptions are

the SupportedStepMoveDirections and SupportedContiniousMoveDirections

parameters, whose value takes the numeric expression.

Receiving response in JSON format is supported.

Parameter Default

value

Description

Published on 10/24/2022

Example of a request for data in XML format:

Example of a request for data in JSON format:

As a response, the server will return the list of all presets as they were created on the device.

Example of a response in XML format:

<ArrayOfString>

<string>Door</string>

<string>Lawn</string>

<string>Window, 1st floor</string>

<string>Window, 2nd floor</string>

<string>Gate</string>

</ArrayOfString>

Example of a response in JSON format:

[
 "Door",
 "Lawn",
 "Window, 1st floor",
 "Window, 2nd floor",
 "Gate"
]

Setting a preset

To set the device to one of the preset positions, use the gotopreset type of request.

Additional request parameters:

Example of a request:

responsety
pe

xml Format of the returned data representation. If not specified

in the request, the default value is used. Optional

parameter. Possible values: xml, json

http://127.0.0.1:8080/ptz?command=getpresets&login=root&password=&channelid=20d9884
f-ae8c-45d3-ac5a-505ec258f01b

http://127.0.0.1:8080/ptz?command=getpresets&login=root&password=&responsetype=json
&channelid=20d9884f-ae8c-45d3-ac5a-505ec258f01b

Eocortex receives the preset list as it is stored on the device itself. Changes to the

list due to adding, changing or deleting presets depend on the device itself. In some

cases, adding a new preset may change the order numbers of existing presets.

Parameter Default

value

Description

index — The serial number of the preset in the list. Starts from 1.

Necessary parameter

http://127.0.0.1:8080/ptz?command=gotopreset&login=root&password=&channelid=20d9884
f-ae8c-45d3-ac5a-505ec258f01b&index=1

Published on 10/24/2022

"Continuous" movement

To send a command to the device for continuous movement in a specified direction, use the

startmove type of request.

Additional request parameters:

Example of a request:

"Continuous" change of focus

To send a command to the device to continuously change the focus, use the

startchangefocus type of request.

Additional request parameters:

Example of a request:

"Continuous" zoom

To send a command to the device to continuously change the degree of image magnification,

use the startzoom type of request.

Additional request parameters:

Parameter Default

value

Description

panspeed — Speed of movement along the horizontal axis from -100 to

100. Necessary parameter

tiltspeed — Speed of movement along the vertical axis from -100 to

100. Necessary parameter

stoptimeou
t

500 Time in milliseconds after which the command will be

terminated

The parameters panspeed and tiltspeed must be both specified in the request

even if movement is required only on one of the axes. In such case the idling

parameter must take 0 as the value.

http://127.0.0.1:8080/ptz?command=startmove&login=root&password=&channelid=20d9884f
-ae8c-45d3-ac5a-505ec258f01b&panspeed=2&tiltspeed=2&stoptimeout=100

Parameter Default

value

Description

speed — Speed of focus change from -100 to 100. Necessary

parameter

stoptimeou
t

500 Time in milliseconds after which the command will be

terminated

http://127.0.0.1:8080/ptz?command=startchangefocus&login=root&password=&channelid=2
0d9884f-ae8c-45d3-ac5a-505ec258f01b&speed=5&stoptimeout=100

Parameter Default

value

Description

speed — Speed of zoom change from -100 to 100. Necessary

parameter

Published on 10/24/2022

Example of a request:

Termination of “continuous” actions

To terminate camera actions triggered by "continuous" commands, use the stop type of

request.

Example of a request:

Automatic focus

To activate the automatic focus mechanism, use the setautofocus type of request.

Example of a request:

Centering

To center the camera on a certain point of the frame, use the moveto type of request.

Additional request parameters:

Example of a request:

stoptimeou
t

500 Time in milliseconds after which the command will be

terminated

http://127.0.0.1:8080/ptz?command=startzoom&login=root&password=&channelid=20d9884f
-ae8c-45d3-ac5a-505ec258f01b&speed=2&stoptimeout=100

http://127.0.0.1:8080/ptz?command=stop&login=root&password=&channelid=20d9884f-
ae8c-45d3-ac5a-505ec258f01b

http://127.0.0.1:8080/ptz?command=setautofocus&login=root&password=&channelid=20d98
84f-ae8c-45d3-ac5a-505ec258f01b

Parameter Default

value

Description

width — Frame width in pixels. Necessary parameter

height — Frame height in pixels. Necessary parameter

x — The position of the centering point along the horizontal axis.

Can take a value from 0 to the width parameter value, from

left to right. Necessary parameter

y — The position of the centering point along the vertical axis.

Can take a value from 0 to the height parameter value,

from top to bottom. Necessary parameter

http://127.0.0.1:8080/ptz?command=moveto&login=root&password=&channelid=20d9884f-
ae8c-45d3-ac5a-505ec258f01b&width=1920&height=1080&x=300&y=650

To get information about the width and height of the frame, use the Getting
information about PTZ capabilities request.

Published on 10/24/2022

"Step-by-step" movement

To send a command to the device for stepping in a specified direction relative to the current

position, use the move request type.

Additional request parameters:

Example of a request:

"Step-by-step" zoom

To send a command to the device to perform a step change in the magnification of the image,

use the zoom type of request.

Additional request parameters:

Example of a request:

Zooming the selected area (AreaZoom)

To zoom in on a certain part of the frame, use the showrect type of request.

Additional request parameters:

Parameter Default

value

Description

panstep — Step on the horizontal axis from -100 to 100. Necessary

parameter

tiltstep — Step on the vertical axis from -100 to 100. Necessary

parameter

The parameters panstep and tiltstep must be both specified in the request even if

movement is required only on one of the axes. In such case the idling parameter

must take 0 as the value.

http://127.0.0.1:8080/ptz?command=move&login=root&password=&channelid=20d9884f-
ae8c-45d3-ac5a-505ec258f01b&tiltstep=15&panstep=0

Parameter Default

value

Description

zoomstep — Step from -100 to 100. Necessary parameter

http://127.0.0.1:8080/ptz?command=zoom&login=root&password=&channelid=20d9884f-
ae8c-45d3-ac5a-505ec258f01b&zoomstep=10

Position of the area to be zoomed in is specified using a rectangle, defined by the

parameters passed in the request: the coordinates of the upper left corner of the

rectangle, as well as rectangle width and height relative to the specified position.

Parameter Default

value

Description

frameWidth — Frame width in pixels. Necessary parameter

frameHeigh
t

— Frame height in pixels. Necessary parameter

Published on 10/24/2022

Example of a request:

x — Position of the upper left corner of the rectangle along the

horizontal axis. Can take a value from 0 to the frameWidth

parameter value, from left to right. Necessary parameter

y — Position of the upper left corner of the rectangle along the

vertical axis. Can take a value from 0 to the frameHeight

parameter value, from top to bottom. Necessary parameter

width — Width of the zoom area starting from the x parameter value

in pixels. Necessary parameter

height — Height of the zoom area starting from the y parameter value

in pixels. Necessary parameter

To get information about the width and height of the frame, use the Getting information
about PTZ capabilities request.

http://127.0.0.1:8080/ptz?command=showrect&login=root&password=&channelid=20d9884f-
ae8c-45d3-ac5a-
505ec258f01b&frameWidth=1920&frameHeight=1080&x=250&y=800&width=100&height=100

Published on 10/24/2022

HTTP interface for receiving media data

In addition to the ability to receive text information about the system and manage its

components, the Eocortex HTTP interface lets you access such content as frames and video

from connected cameras using CGI requests.

Such requests in general have the following format:

Where:

Receiving a single frame

To get separate frames from the server for a particular camera, use a request to the site

resource.

Additional request parameters:

{Protocol}://{Server}:{Port}/{Resource}?login={Login}&password={Password}&channelid
={Channel}&{Parameter}={Parameter value}

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default

ports: 8080 for http; 18080 for https

Resource — URI of the server resource to which the request is addressed

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password —
md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or

not specified in the request

Channel —
The number, name, or unique identifier of the channel. Can

be obtained by running the Receiving system configuration

request. Necessary parameter

Parameter —

An additional parameter that specifies the request itself or

the answer to it. Depending on the request, it may be

possible to apply multiple additional parameters at the same

time

Parameter
value

—
Value of the applied additional parameter

Parameter Default

value

Description

withconten
ttype

false Parameter that determines whether to specify a header with

the type of data transmitted in the response from the server

or not. Valid values: true, false. Optional parameter

mode realtime Parameter that defines the stream mode for transmitting

frames. Valid values: realtime, archive. If the

mode=archive, the starttime parameter must also be set.

Optional parameter

Published on 10/24/2022

Example of a request without additional parameters:

As a response, the server will return a frame from the real-time stream for the specified

camera.

Example 1 of a request with additional parameters:

As a response, the server will return a frame from the Additional 2 stream, if possible.

Example 2 of a request with additional parameters:

As a response, the server will return the frame from the archive recorded on January 01,

2023 at 00:00:01 UTC, adding to the response a header with the type of data and changing

the resolution to 640x480, if possible.

Receiving raw video

One of the options to receive a video stream from the Eocortex server is a request to the

video resource, which returns in response the data received by the server from the camera

without transcoding.

Additional request parameters:

starttime — Parameter specifying the time in the archive for which the

frame should be transmitted. This parameter consists of a

combination of date and UTC time in the format

dd.MM.yyyy HH:mm:ss or dd.MM.yyyy HH:mm:ss.fff.

Necessary parameter if mode=archive

resolution
x

64 Required width of the requested frame in pixels. Cannot

exceed the actual width of the frame. Optional parameter

resolution
y

36 Required height of the requested frame in pixels. Cannot

exceed the actual frame height. Optional parameter

streamtype Last
available

value of the
list

Parameter specifying the stream to receive frames. Possible

values:

• Main — the Main stream;

• Alternative — the Additional 1 stream;

• SecondAlternative — the Additional 2 stream;

• ThirdAlternative — the Additional 3 stream.

Availability of these values depends on the channel settings

http://127.0.0.1:8080/site?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f

By default, the frame will be taken from the last stream in the list. For example, if

the server receives four streams from the camera, the frame will be taken from the

stream “Additional 3”, which corresponds to the fourth stream of the camera.

http://127.0.0.1:8080/site?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f&streamtype=SecondAlternative

http://127.0.0.1:8080/site?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f&withcontenttype=true&mode=archive&starttime=01.01.2023
00:00:01&resolutionx=640&resolutiony=480

This request is primarily designed for use in third-party applications that act as

clients. Additional decoding libraries may be required to display the received data.

Published on 10/24/2022

Parameter Default

value

Description

channel — Name of the channel within the current configuration. Can

be obtained from the application interface and by running

the Receiving system configuration request. Necessary

parameter if channelid or channelnum is not used

channelid — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration. Necessary parameter if

channel or channelnum is not used

channelnum — Number of the channel within the current configuration. Can

be found out by manually counting the channels in the

response to the Receiving system configuration request.

Necessary parameter if channel or channelid is not used

sound off Parameter for receiving video and audio data of the channel

within one connection. Possible values: on — enable audio

reception, off — disable. If sound=on, server returns

sound frames in G.711U format, interleaving them in data

stream with video frames. Optional parameter

streamtype Main Parameter specifying the stream to receive frames. Possible

values:

• Main — the Main stream;

• Alternative — the Additional 1 stream;

• SecondAlternative — the Additional 2 stream;

• ThirdAlternative — the Additional 3 stream.

Availability of these values depends on the channel settings

mode realtime Parameter that defines the stream mode for transmitting

frames. Valid values: realtime, archive. If the

mode=archive, the starttime parameter must also be set.

Optional parameter

starttime — Parameter specifying the time in the archive for which frames

should be transmitted. This parameter consists of a

combination of date and UTC time in the format dd.MM.yyyy

HH:mm:ss or dd.MM.yyyy HH:mm:ss.fff. Necessary

parameter if mode=archive

speed 1 Parameter that defines the playback speed of the stream.

Valid values: from 0.1 to 20. Optional parameter, applies

only when mode=archive

The channel, channelnum and channelid parameters are interchangeable, so the

request should contain only one of them.

• The channel parameter passes the channel name as it is presented in the

current configuration. If several channels with the same name exist in the

configuration or if the channel name is changed in the configuration,

collisions and errors may occur due to incorrect values of the parameter.

• The channelnum parameter passes as a value the serial number of the

channel in the list of all channels in the current configuration. Using this

parameter may cause difficulties when working with large systems. In

addition, the channel number may change when channels were moved or

deleted from the current configuration.

• The channelid parameter is a unique channel identifier (GUID) that is

generated when the channel is created and remains unchanged throughout

the lifetime of the channel in the configuration.

To avoid possible problems with requests, it is recommended to use the channelid

parameter to specify the channel.

Published on 10/24/2022

Example of a request without additional parameters:

http://127.0.0.1:8080/video?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f

In response to the request, the server returns an “endless” HTTP response containing video

frames separated by headers.

Example of a response to a request:

HTTP/1.1 200 OK
…
Content-Type: multipart/x-mixed-replace; boundary=myboundary

-- myboundary
Content-Type: image/jpeg
Content-Length: 63125

<JPEG frame body>

If sound=on, video frames in the “endless” response are interleaved with audio frames.

Пример запроса с параметром sound=on:

http://127.0.0.1:8080/video?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f&sound=on

Example of a response to a request with an audio frame:

To receive frames from the archive it is necessary to supplement the request with the

appropriate parameters.

Example of a request for frames from the archive:

http://127.0.0.1:8080/video?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f&mode=archive&startTime=01.01.2023 00:00:01&speed=3

In the “endless” response the server will start transmitting frames from the archive at x3

speed, starting from the archive frame taken on January 01, 2023 at 00:00:01 UTC.

Response structure in this case is completely identical to responses with real-time frames.

Regardless of the request parameters applied, the response from the server will always

contain the following parameters:

All examples of requests below are composed using the channelid parameter.

HTTP/1.1 200 OK
…
Content-Type: multipart/x-mixed-replace; boundary=myboundary

-- myboundary
Content-Type: audio, PCMU
Content-Length: 1000

<G711U frame body>

Published on 10/24/2022

When transmitting reference frames of MPEG-4 and H.264 video formats, in addition

to frame data itself, the initializing information for the decoder of the corresponding

format will also be transmitted.

Receiving transcoded video in MJPEG format

When calling the video resource, the Eocortex server returns the video in the original format

as it was received from the camera. For some applications and low-performance devices,

decoding video in H.264 format or displaying MJPEG video in its original resolution can be a

challenge.

For such cases, Eocortex is capable of sending video and audio streams transcoded by the

mobile server. It is possible to receive transcoded streams using a request to the mobile

resource.

Additional request parameters:

Parameter Description

Content-Type Header of the MIME type of the transmitted frame. Depending on the

specified video format, it can take the following values:

• image/jpeg — video frame, MJPEG format.

• video, mpeg4, I-frame — key frame, MPEG4 format.

• video, mpeg4, P-frame — predicted frame, MPEG4 format.

• video, h264, I-frame — key frame, H.264 format.

• video, h264, P-frame — predicted frame, H.264 format.

• audio, PCMU — audio frame, G.711U format.

Content-
Length

Transmitted frame size header. The value is specified in bytes.

Parameter Default

value

Description

channel — Name of the channel within the current configuration. Can

be obtained from the application interface and by running

the Receiving system configuration request. Necessary

parameter if channelid or channelnum is not used

channelid — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration. Necessary parameter if

channel or channelnum is not used

channelnum — Number of the channel within the current configuration. Can

be found out by manually counting the channels in the

response to the Receiving system configuration request.

Necessary parameter if channel or channelid is not used

sound off Parameter for receiving video and audio data of the channel

within one connection. Possible values: on — enable audio

reception, off — disable. If sound=on, server returns

sound frames in G.711U format, interleaving them in data

stream with video frames. Optional parameter

streamtype Main Parameter specifying the stream to receive frames. Possible

values:

• Main — the Main stream;

• Alternative — the Additional 1 stream;

• SecondAlternative — the Additional 2 stream;

• ThirdAlternative — the Additional 3 stream.

Availability of these values depends on the channel settings

https://en.wikipedia.org/wiki/Media_type

Published on 10/24/2022

When using the mobile request, it is important to keep in mind that the term

“stream” can refer to two entities at the same time:

• Original video stream

• Video stream transcoded by the mobile server

The original stream in this case is the stream received from the camera by the Eocortex

server named Main, Additional 1 (Alternative), Additional 2 (SecondAlternative) or

Additional 3 (ThirdAlternative). Such stream is used as a source of frames for transcoding

by the mobile server and is specified in the streamtype parameter

By transcoded stream is meant the same source stream, but converted by the mobile server

in accordance with its own settings. This is what the server transmits in response to the

request.

soundformat g711u Specifies the format for transcoding an audio stream.

Possible values: pcm, g711u, g711a, aac. Optional

parameter

fps Rate of
the mobile

server
stream

Desired frame rate per second. The actual frame rate may

differ from the requested one because it depends on many

parameters. The maximum rate is limited by the settings of

the transcoded stream for the mobile server. Optional

parameter

oneframeonly false Parameter for single frame request with subsequent

connection termination. Can be used as an alternative to

site request. Possible values: true, false. Optional

parameter

resolutionx Low
quality
value

Desired frame width. Used to select the most suitable

quality level for the transcoded stream. Optional parameter

resolutiony Low
quality
value

Desired frame height. Used to select the most suitable

quality level for the transcoded stream. Optional parameter

mode realtime Parameter that defines the stream mode for frames

transmission. Possible values: realtime, archive. When

applying the mode=archive parameter, it is necessary to

set the starttime parameter as well. Optional parameter

starttime — Parameter specifying the time in the archive for which frames

should be transmitted. This parameter consists of a

combination of date and UTC time in the format dd.MM.yyyy

HH:mm:ss or dd.MM.yyyy HH:mm:ss.fff. Necessary

parameter if mode=archive

isforward true Direction of the archive playback. Possible values: true — the

archive is played in chronological order, false — in reverse

chronological order. Optional parameter, applies only when

mode=archive

speed 1 Parameter that defines the playback speed of the stream.

Valid values: from 0.1 to 20. Optional parameter, applies

only when mode=archive

withcontentt
ype

false Parameter that determines whether to specify a header with

the type of data transmitted in the response from the server

or not. Valid values: true, false. Optional parameter

Published on 10/24/2022

The mobile request uses the transcoding mechanisms of the mobile server to

transmit streams. Therefore, the received stream is limited by the restrictions caused

by the mobile server's settings.

The mobile server lets you set up to three quality levels of the stream to transcode: Low,

Medium and High. For each quality level it is possible to specify its own frame resolution

settings and their rate in the stream. For H.264, H.265, MPEG4 and MxPEG source streams it

is also possible to set transcoding using only key frames.

When processing the mobile request, the server automatically chooses the level of quality

closest to the specified values and applies the settings of this level to the stream to be

transcoded: resolution of the level as the stream resolution, frame rate of the level as the

maximum frame rate of the stream.

Example 1:

The request contains the following stream parameters: resolutionx=720, resolutiony=500,

fps=20. The closest quality level to the specified parameters is Medium with frame

resolution of 640x480 and fps=10. The resulting transcoded stream will be limited by the

Medium quality level settings and will fully correspond to them.

Example 2:

The request contains the following stream parameters: resolutionx=600, resolutiony=460,

fps=5. The closest quality level to the specified parameters is again Medium with the same

settings. The resulting transcoded stream will then have a resolution 640x480 and fps=5.

To view the current mobile server settings, use the Receiving system configuration request –

all the transcoding parameters are listed in the MobileServerInfo section.

To change the mobile server settings, use the Mobile devices tab of the server settings

window in the Eocortex Configurator application.

The mobile server has additional user access rights settings. The user sending the request

must be granted with the Connection via mobile devices and Web-Client permission.

To check the current rights settings, you can use the Receiving system configuration request

– the needed right is represented by the CanGetTranscodedVideoFromMobileServer

parameter of the UserGroup section.

To change the rights settings, use the Users section of the Eocortex Configurator

application.

The mobile server uses the same settings to send streams to mobile applications, to

the Web Client, and in response to the mobile request. Changing mobile server

settings can adversely affect other users of the system.

The channel, channelnum and channelid parameters are interchangeable, so the

request should contain only one of them.

• The channel parameter passes the channel name as it is presented in the

current configuration. If several channels with the same name exist in the

configuration or if the channel name is changed in the configuration,

collisions and errors may occur due to incorrect values of the parameter.

https://eocortex.com/assets/documentation/en/config/servers/server-config.htm#mobile
https://eocortex.com/assets/documentation/en/config/users/users.htm

Published on 10/24/2022

Example of a request 1:

http://127.0.0.1:8080/mobile?login=root&password=&channelid=706c4691-3d90-41e3-
8789-76eb9810648f

As a response, the server will start transmitting the stream according to the lowest quality

level of the configured.

Example of a request 2:

http://127.0.0.1:8080/mobile?login=root&password=&channelid=706c4691-3d90-41e3-
8789-76eb9810648f&resolutiony=480&sound=on

As a response, the server will automatically determine the closest quality level according to

its settings and start transmitting the stream according to its settings.

Example of a request 3:

http://127.0.0.1:8080/mobile?login=root&password=&channelid=706c4691-3d90-41e3-
8789-76eb9810648f&resolutiony=480&oneframeonly=true&mode=archive
&=starttime=01.01.2023 00:00:01

As a response, the server will automatically determine the closest quality level by the values

of the settings and transmit a single frame from the archive, taken on January 01, 2023 at

00:00:01, and then terminate the transmission session.

If it is supposed to play the resulting transcoded stream in a browser, add the

withcontenttype=true parameter to the request.

Receiving an archive fragment as MP4 video file

In addition to receiving streaming video and audio data, Eocortex also provide the option for

exporting archive fragments as MP4 files. To do this, use requests to the exportarchive

resource.

The function is supported only for cameras whose archive is recorded in H.264, H.265,

or MJPEG formats.

Additional request parameters:

• The channelnum parameter passes as a value the serial number of the

channel in the list of all channels in the current configuration. Using this

parameter may cause difficulties when working with large systems. In

addition, the channel number may change when channels were moved or

deleted from the current configuration.

• The channelid parameter is a unique channel identifier (GUID) that is

generated when the channel is created and remains unchanged throughout

the lifetime of the channel in the configuration.

To avoid possible problems with requests, it is recommended to use the channelid

parameter to specify the channel.

All examples of requests below are composed using the channelid parameter.

Parameter Default

value

Description

channelid — Unique identifier of the channel. Can be obtained by running

the Obtaining system configuration request. Necessary

parameter

fromtime — Date and time of the beginning of the period for which the

information is requested. The time must be specified in the

Published on 10/24/2022

Example of a request:

http://127.0.0.1:8080/exportarchive?login=root&password=&channelid=706c4691-3d90-
41e3-8789-76eb9810648f&fromtime=01.01.2023 00:00:00&totime=01.01.2023
00:30:00&sound=on&usetimestamps=true

As a response to this request, the server will prepare an MP4 file containing a fragment of the

archive with an audio track and timestamps, recorded on January 01, 2023 between 00:00:00

and 00:30:00. Downloading of the file will start automatically if the connection to the server

is not interrupted by closing the application.

UTC time zone в формате DD.MM.YYYY hh:mm:ss.

Necessary parameter

totime — Date and time of the end of the period for which the

information is requested. The time must be specified in the

UTC time zone в формате DD.MM.YYYY hh:mm:ss.

Necessary parameter

sound off Parameter for adding audio data from the archive to the

exported file. Available for Windows servers only. Possible

values: on — export audio, off — do not export. Optional

parameter

usetimestamp
s

false Parameter that enables overlaying a timestamp with the

recording time of the displayed frame on top of the video.

Possible values: true — to overlay timestamp, false — to

not overlay. Optional parameter

fromDevice false Parameter requesting to export the archive stored directly

on the camera or DVR, if they support the function of

accessing the archive. Possible values: true — export the

archive from the device, false — export the archive from

the server. Optional parameter

addhvc1tagfo
rhevc

false Option to add a header that allows playback of the exported

fragment of the H.265 format on Apple devices. Slightly

increases the duration of the export. Possible values: true

— add header, false — do not add. Optional parameter

The request has several technical limitations that must be taken into account when

using it:

• Requests for exporting a fragment of the archive are added to the server's

queue for execution when received. The maximum queue size is 10 requests.

• The maximum number of simultaneously processed requests is 5. Thus,

when the queue is fully loaded, only the first 5 requests will be processed,

while the remaining 5 will be on hold.

• All requests above the maximum queue size will be discarded with message

code 500.

• The maximum duration of the exported fragment is 1 hour.

Published on 10/24/2022

RTSP interface for receiving video and sound

The RTSP interface is used for receiving video and audio by client applications using the RTSP

protocol. This interface supports the H.264 codec and, optionally, MJPEG (MJPEG is disabled

by default).

An alternative way of generating a URL to access the RTSP interface is described on

the Generation of RTSP links to cameras in Eocortex Configurator application page of

the Administrator's Guide.

To switch it on, it is required to launch Eocortex Configurator, and make sure that the

checkbox Accept RTSP connections on the page of server settings in Network section is

checked. The same tab also shows the RTSP port for making connections.

To make a RTSP connection it is possible to use TCP (RTSP over TCP) or HTTP (RTSP over

HTTP) connections. UDP connections (RTSP over UDP) are not supported.

By default, MJPEG broadcasting via RTSP protocol is off, because this protocol

supports only MJPEG frames coded in Baseline mode. Thus, transcoding is required

for broadcasting video streams coded in other MJPEG modes, which in its turn will

increase server load. Additionally, MJPEG transcoding may cause lower frame rate as

compared with the frame rate of the camera.

Connection to the server is made by an RTSP client, for example, VLC, with the following

connection string:

Where:

rtsp://{Server}:{Port}/rtsp?login={Login}&password={Password}&{Channel}={Channel
value}&{Parameter}={Parameter value}

Parameter Default

value

Description

Server — Domain name or IP address of the Eocortex server

Port 554 RTSP protocol network port

https://eocortex.com/assets/documentation/en/features/rtsp-links-generation.htm

Published on 10/24/2022

The channelid and channelnum parameters are interchangeable, so the request

must contain only one of them. The channelnum parameter uses the channel serial

number in the list of channels as a value. Any configuration change may cause the

number to shift, which may cause errors in the request.

It is recommended to use a channelid that uses the unchangeable camera GUID that

was generated when the channel was created.

RTSP request can also contain additional parameters that provide additional features:

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password —
md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or

not specified in the request

Channel — Channel specification method: channelid or channelnum

Channel
value

—
Channel GUID for channelid or channel number for

channelnum

Parameter —

An additional parameter that specifies the request itself or

the answer to it. Depending on the request, it may be

possible to apply multiple additional parameters at the same

time

Parameter
value

—
Value of the applied additional parameter

Parameter Default

value

Description

sound off Parameter for receiving video and audio data of the channel

within one connection. Possible values: on — enable sound

reception, off — disable. Optional parameter

streamtype Main Parameter specifying the stream to receive frames. Possible

values:

• Main — the Main stream;

• Alternative — the Additional 1 stream;

• SecondAlternative — the Additional 2 stream;

• ThirdAlternative — the Additional 3 stream.

Availability of these values depends on the channel settings

mode realtime Parameter that defines the stream mode for transmitting

frames. Valid values: realtime, archive. If the

mode=archive, the starttime parameter must also be set.

Optional parameter

starttime — Parameter specifying the time in the archive for which

frames should be transmitted. This parameter consists of a

combination of date and UTC time in the format

dd.MM.yyyy HH:mm:ss or dd.MM.yyyy HH:mm:ss.fff.

Necessary parameter if mode=archive

speed 1 Parameter that defines the playback speed of the stream.

Valid values: from 0.1 to 20. Optional parameter, applies

only when mode=archive

isforward true Direction of the archive playback. Possible values: true —

the archive is played in chronological order, false — in

Published on 10/24/2022

Example of a request 1:

rtsp://127.0.0.1:554/rtsp?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f

As a response, the server will start transmitting video frames from the real-time stream for

the specified channel.

Example of a request 2:

rtsp://127.0.0.1:554/rtsp?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f&sound=on

As a response, the server will start transmitting video and audio frames from the real-time

stream for the specified channel.

Example of a request 3:

rtsp://127.0.0.1:554/rtsp?login=root&password=&channelid=706c4691-3d90-41e3-8789-
76eb9810648f&sound=on&mode=archive&starttime=01.01.2023
23:59:59&isforward=false&speed=2

As a response, the server will start transmitting video and audio frames from the archive of

the specified channel for January 01, 2023, starting playback in reverse chronological order

from 23:59:59 at the rate of x2.

reverse chronological order. Optional parameter, applies

only when mode=archive

Published on 10/24/2022

HTTP interface for managing automatic switching of views

The HTTP interface make it possible to you to set an automatic switching profile and get

information about it.

Example request:

Where:

Setting automatic switching profile

The setautoswitchview request type is used to set the automatic switching profile.

Additional request parameters:

{Protocol}://{Server}:{Port}/{Resource}?type={Type}&{Parameter}={Parameter
value}&login={Login}&password={Password}

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default

ports: 8080 for http; 18080 for https

Resource — URI of the server resource to which the request is addressed

Type —
Request type, this type can take the following values:

setautoswitchviews and getautoswitchviews

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password —
md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or

not specified in the request

Parameter —

An additional parameter that specifies the request itself or

the answer to it. Depending on the request, it may be

possible to apply multiple additional parameters at the same

time

Parameter
value

—
Value of the applied additional parameter

Parameter Default

value

Description

clientip — IP address of the device on which the client application is

running. Necessary parameter

monitor — Number of the monitor in the current configuration of the

client application. Starts from 0. Necessary parameter

autoswitch
viewid

— A unique identifier created by the administrator in the
Eocortex configurator, used to create an automatic switching

view profile and apply it to the client application

Published on 10/24/2022

Response example:

Receiving automatic switching profiles

The setautoswitchview query type is used to set an automatic switching profile.

Additional request parameters:

Response example:

Example of a response in JSON format:

Note: The hostname variable has been added to HTTP requests for executing commands in the
Eocortex client, allowing to specify the client address by hostname and IP address. The clientip
variable, similar in function to hostname, has been retained for backward compatibility. In case
of simultaneous use of variables in a request, only the value of hostname will be used.

http://127.0.0.1:8080/command?type=setautoswitchview&clientip=127.0.0.1&monitor=0&a
utoswitchviewid=d50ce608-978e-4a49-b0f6-4406ae7f2975&login=root&password

Parameter Default

value

Description

responsety
pe

xml Format of the returned data representation. If not specified in
the request, the default value is used. Optional parameter.
Possible values: xml, json

http://127.0.0.1:8080/command?login=root&type=getautoswitchviews&password=&response
type=json

[

 {

 "Id": "d50ce608-978e-4a49-b0f6-4406ae7f2975",

 "Name": " New automatic switching 1" },
 {

 "Id": "ae491b1a-8d3b-4031-a3fc-d84b94781ebe",

 "Name": " New automatic switching 2"}
]

Published on 10/24/2022

Eocortex API with XML interface

XML interface provides the ability to send XML requests to the Eocortex server and receive

data in the same format as a response. To send a request in XML format, use the following

URL:

{Protocol}://{Server}:{Port}/xml

Where:

In the body of the request specify the basic parameters using the following structure:

Below is a description of the request body parameter assignment:

In its turn, the server returns a response of the following format:

In order to work with the XML interface of the system, it is necessary to use

applications that are able to send the XML-format body of the request to the

specified URL.

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default

ports: 8080 for http; 18080 for https

<?xml version="1.0" encoding="utf-8" ?>
<request>
 <server_login>root</server_login>
 <server_pass_hash></server_pass_hash>
 <request_name>get_people_counters</request_name>
 <request_params>
 …
 </request_params>
</request>

Parameter Default

value

Description

server_log
in

— Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

server_pas
s_hash

— md5-hash of the Eocortex user password. If no password is

specified for the user, this parameter can be left blank or

not specified in the request

request_na
me

— String name of request type

request_pa
rams

— Container for setting the parameters specific to the request

type defined in the request_name

<?xml version="1.0" encoding="utf-8" ?>
<result>
 <request_name></request_name>
 <request_result>Ok</request_result>
 <request_msg>Request successful.</request_msg>

Published on 10/24/2022

Where:

Receiving People Counting data

To get the data of the People Counting module, use the get_people_counters type of

request.

This request has the following parameters:

Example of the request body:

 <request_time>20.09.2012 10:58:15</request_time>
 <request_time_local>20.09.2012 16:58:15</request_time_local>
</result>

Parameter Description

request_name String name of request type

request_resul
t

Request result:

Ok — if the request was successful

Error — if there were any errors

request_msg String comment on the results of the request

request_time Request time in UTC

request_time_
local

Request time in local time zone

The response may also contain other parameters specific to the request type.

Parameter Default

value

Description

channel_id — Unique identifier of the channel. Can be obtained by

running the Obtaining system configuration request.

Necessary parameter

search_time — The moment of time for which it is required to show

counter data. The time is shown in yyyy-MM-dd

HH:mm:ss format. GMT (UTC) time must be indicated.

<?xml version="1.0" encoding="utf-8" ?>
<request>
 <server_login>root</server_login>
 <server_pass_hash></server_pass_hash>
 <request_name>get_people_counters</request_name>
 <request_params>
 <channel_id>cacdd8e6-1c56-435c-86e3-6967d7494a50</channel_id>
 <search_time>2012-09-17 09:50:00</search_time>
 </request_params>
</request>

Published on 10/24/2022

As a response, the server returns the following strings:

<in>434</in>
<out>378</out>

Where:

Parameter Description

in Number of people who entered for the given counter

out Number of people who exited for the given counter

Published on 10/24/2022

Broadcasting video to a site

Video broadcast can be organized with the help of a mobile connections service of Eocortex

server and the components on the client’s side (in the browser).

Broadcasting via HTML5

 Available in Eocortex version 4.0 and later

Video broadcast to a site can be organized with the help of the mobile connections service of

Eocortex server and an HTML5 player provided by the Eocortex Web Client.

To arrange a broadcast, it is necessary to generate a URL to the stream of the selected camera

as follows:

Where:

Only the Login parameter is case-sensitive, while the others can be specified in any

case.

Example of URL:

{Protocol}://{Server}:{Port}/embedding/index.html#/embed?login={Login}&password={Pa
ssword}&channelid={Channel}&channelstreamtype={Stream}&mode={Format}

Parameter Default

value

Description

Protocol http
Network protocol selected for communication with the

Eocortex server. The default is http, https availability is

determined by the server settings

Server — Domain name or IP address of the Eocortex server

Port 8080
Network port according to the selected Protocol. Default

ports: 8080 for http; 18080 for https

Login —

Name of the Eocortex user on whose behalf the request will

be executed. The user must have access rights to the

channels, functions and features of the system accessed as

part of the request

Password — md5-hash of Eocortex user's password. If no password is

specified for the user, the parameter value must be the

md5-hash of the empty string

(D41D8CD98F00B204E989800998ECF8427E)

Channel — Unique identifier of the channel. Can be obtained by running

the Receiving system configuration request

Stream — Parameter specifying the stream to receive frames. Possible

values:

• Main — the Main stream;

• Alternative — the Additional 1 stream;

• SecondAlternative — the Additional 2 stream;

• ThirdAlternative — the Additional 3 stream.

Availability of these values depends on the channel settings

Format — Preferred video format: MJPEG or H264

Published on 10/24/2022

https://188.17.220.37:18080/embedding/index.html#/embed?login=Website&password=5989
aeb826edde08a1109deb5e61a4ba&channelid=d8112e29-fce9-40ea-bef4-
a1c7b276ac98&channelstreamtype=Alternative&mode=H264

The video stream is broadcasted using Eocortex Web Client components, which requires

the following settings to be checked in the Eocortex Configurator application before

broadcasting:

• The stream must be allowed to be used by mobile applications and the Web Client. In

the Cameras section, select the needed camera and make sure that the stream

chosen for broadcasting has the Mobile and web clients option enabled.

• The user, on whose behalf the stream will be requested must have the right to use the

embedded component. In the Users section, select the user group and click Edit. In

the window that opens, select the Basic tab and make sure that the Connection via

mobile devices and Web-Client permission is enabled.

• The user, on whose behalf the stream will be requested must have the right to view

the camera selected for streaming. In the Users section, select the user group and

click Edit. In the window that opens, select the Cameras tab and make sure that the

Surveillance or Surveillance and archive permission is enabled for the selected

camera.

To ensure the system security, it is recommended using a dedicated user for

broadcasting video to the site, providing it with the minimum set of rights enough

only for this purpose.

There are several ways to provide access to the stream using the generated link. For example,

the link can be placed on the page as a hyperlink that opens a separate tab with the player

or it can be used as content of the iframe element for playing directly on the page.

To open the player as a separate tab, place a hyperlink element (<a>) on the page, adding

to it a previously generated link to the stream:

<a href="https://188.17.220.37:18080/embedding/index.html#/embed?
login=Website&password=5989aeb826edde08a1109deb5e61a4ba&
channelid=d8112e29-fce9-40ea-bef4-a1c7b276ac98&
channelstreamtype=Alternative&mode=H264">Parking cam 1

When opening the player as a separate tab, the width and height of the image are

determined by the width and height of the opened tab, regardless of the original

parameters of the received stream.

To place the player directly on the page, add the inline frame element (<iframe>) to the

page code, adding to it the previously generated link to the stream:

<iframe src="https://188.17.220.37:18080/embedding/index.html#/embed?
login=Website&password=5989aeb826edde08a1109deb5e61a4ba&
channelid=d8112e29-fce9-40ea-bef4-a1c7b276ac98&
channelstreamtype=Alternative&mode=H264" frameborder="0" width="{Width}"
height="{Height}" allowfullscreen></iframe>

When embedding the player as the content of an iframe element, the image

dimensions are determined by the specified Width and Height parameters,

regardless of the original parameters of the received stream.

This method has some limitations that must be considered when using it:

Published on 10/24/2022

• The method requires the browser to support the Media Source API. Up-to-date versions

of most browsers support this API by default, except Safari for iOS.

• Broadcasting is only available for live video. Access to the archive is not supported.

• Broadcasting is only available for video. Receiving audio from the camera is not

supported in this method.

• Broadcasting is only available for H264 and MJPEG streams. Other video formats are

not supported.

• Broadcasting in H264 is available only if the original stream from the camera is

broadcasting in the same format. Transcoding of MJPEG streams to H264 format is

not supported.

• Broadcasting in MJPEG is available both for cameras originally broadcasting in this

format and for H264 streams by transcoding the original stream on the server.

• If any problems occur with displaying a stream in H264 format, transcoding to

MJPEG will be automatically applied to the stream without the possibility of

switching it back by the user.

Transcoding H264 to MJPEG consumes server resources and may cause an increased

load on the server.

In the case of problems with broadcasting, make sure that:

• The specified server, camera and stream selected for broadcasting are active and

available for use.

• The user has been granted with the necessary permissions to use Web Client

components and receive the stream.

• All mandatory parameters of the link (credentials, camera ID, stream parameters)

are filled out with correct values.

Detailed information on the reasons can be obtained in the Console of the browser.

To do this, open the link to the stream as a separate tab, launch Developer Tools

(F12) and switch to the Console tab.

Broadcasting via Flash (obsolete)

This method is obsolete due to the end of support for Flash technology by Adobe.

Video broadcast to a site can be organized with the help of a mobile connections service of

Eocortex server and a Flash component on the client’s side.

An example of a component used on the HTML page can be found in Examples\SiteFlash folder.

It is necessary to indicate the parameters for connection to Eocortex server, as well as the

required codec (H264 or MJPEG) and the identifier (name/number) of a channel from which the

video will be broadcast, on HTML page (index.html).

Example of configuration:

var flashvars = {
 server: "demo.eocortex.com", // server address
 port: "8080", // server port
 login: "root", // user name
 password_hash: "", // md5 password hash
 mode: "MJPEG," // preferred video format
 channel: "1" // channel name, number or identifier
 };

Identifiers of all channels in the system can be received with a specific request (see Obtaining

system configuration).

https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API
https://caniuse.com/?search=mse

Published on 10/24/2022

Preferred video format (mode) parameter can be MJPEG, H264, or can be omitted. If

preferred video format is not set, an appropriate format will be set automatically. H264 value

can be defined only for the cameras which broadcast H264-coded streams. MJPEG can be

defined for all cameras, but it can cause increased server load if recoding from H.264 is

required.

Broadcasting via JavaScript (obsolete)

This method is obsolete because it causes increased load of Eocortex server and

provides inferior quality of broadcasting to site as compared with other options.

Video broadcast to a site can be organized with the help of Eocortex server and JavaScript

component on the client’s side. A script for the client’s side and the example of its usage on

the HTML page can be found in the Examples\Site\frameReceiver.js folder. In the script

it is necessary to indicate the parameters for connection to Eocortex server, as well as the

identifier (name/number) of a channel from which the video will be broadcast and the required

size of the area to which video frames will be output.

Example of script configuration:

var serverUrl = "http://95.23.84.1:8080" /*server URL*/
var login = "root" /*user with rights to watch channel being broadcast*/
var password = ""; /*MD5 hash of user password in upper case or empty string in case
of blank password*/
var channelnum = 0; /*ordinal number of channel in general configuration, counting
from 0*/
var drawWidth = 577; /*display area width in pixels*/
var drawHeight = 432; /*display area height in pixels*/

An example of script using the channel identifier instead of its ordinal number can be found

in Examples\Site\frameReceiver_id.js folder. There must be a tag

<imgname='frontImage'/> on the HTML page where MJPEG-coded video stream will be

displayed.

It is not recommended to change display area size dynamically, because it will

cause a substantial increase of resources used by mobile connections service since

it transcodes initial video stream into MJPEG and then divides the received stream

among many clients (sessions). The use of different resolutions will also cause

additional load to the mobile connections service.

	General Information on Eocortex SDK
	Quick start – typical tasks
	Plugins
	Registration of plugins in Eocortex
	Action plugin
	Video Analytics Plugin
	Visualiser Plugin
	Menu Item plugin
	Event Processor plugin
	Frame receiver plugin

	Eocortex API with HTTP and RTSP interfaces
	HTTP interface for receiving data
	Receiving system configuration
	Receiving the list of grids available in the Eocortex Client
	Receiving the list of screen profiles from (views) from the server
	Receiving information about the current screen profile in the Eocortex client
	Receiving the current time of Eocortex server
	Receiving information about the availability of the archive for the specified moment of time
	Receiving the list of intervals with information about the beginning and end of the archive recording
	Receiving information about the status of channels

	HTTP interface for receiving events
	Receiving the list of all events registered in the system
	Receiving real-time events
	Receiving events of the Event log
	Receiving a list of special archive events
	Receiving the list of recognized license plates from the archive

	HTTP interface for executing commands by Eocortex server
	Setting archive recording on/off for a channel
	Setting date and time on Eocortex server
	Setting a screen profile on the client
	Setting a grid on the client
	Setting a channel to the grid cell
	Removing a channel from the grid cell
	Clearing the entire grid
	Setting channel to the guard mode
	Sending audio to the camera
	Generating an event from an external system

	HTTP interface for operating PTZ features
	Getting information about PTZ capabilities of the device
	Getting device presets
	Setting a preset
	"Continuous" movement
	"Continuous" change of focus
	"Continuous" zoom
	Termination of “continuous” actions
	Automatic focus
	Centering
	"Step-by-step" movement
	"Step-by-step" zoom
	Zooming the selected area (AreaZoom)

	HTTP interface for receiving media data
	Receiving a single frame
	Receiving raw video
	Receiving transcoded video in MJPEG format
	Receiving an archive fragment as MP4 video file

	RTSP interface for receiving video and sound
	HTTP interface for managing automatic switching of views
	Setting automatic switching profile
	Receiving automatic switching profiles

	Eocortex API with XML interface
	Receiving People Counting data

	Broadcasting video to a site
	Broadcasting via HTML5
	Broadcasting via Flash (obsolete)
	Broadcasting via JavaScript (obsolete)

